Лпт разъем. Программирование порта LPT в Visual Basic. Использование принтерного порта для управления внешними устройствами. «Комсомольский-на-Амуре государственный технический университет»

Скачать распиновку порта принтера:

IEEE 1284 (порт принтера, параллельный порт, англ. Line Print Terminal, LPT) - международный стандарт параллельного интерфейса

В основе данного стандарта лежит интерфейс Centronics и его расширенные версии (ECP, EPP).

Название «LPT» образовано от наименования стандартного устройства принтера «LPT1» (Line Printer Terminal или Line PrinTer) в операционных системах семейства MS-DOS. Интерфейс Centronics и стандарт IEEE 1284

Параллельный порт Centronics - порт, используемый с 1981 года в персональных компьютерах фирмы IBM для подключения печатающих устройств, разработан фирмой Centronics Data Computer Corporation; уже давно стал стандартом де-факто, хотя в действительности официально на данный момент он не стандартизирован.

Изначально этот порт был разработан только для симплексной (однонаправленной) передачи данных, так как предполагалось, что порт Centronics должен использоваться только для работы с принтером. Впоследствии разными фирмами были разработаны дуплексные расширения интерфейса (byte mode, EPP, ECP). Затем был принят международный стандарт IEEE 1284, описывающий как базовый интерфейс Centronics, так и все его расширения.

Виды Разъёмов паралельного порта

Кабельный 36-контактный разъём Centronics для подключения внешнего устройства (IEEE 1284-B)

25-контактный разъём DB-25, используемый как LPT-порт на персональных компьютерах (IEEE 1284-A)

Порт на стороне управляющего устройства (компьютера) имеет 25-контактный 2-рядный разъём DB-25-female ("мама") (IEEE 1284-A). Не путать с аналогичным male-разъёмом ("папа"), который устанавливался на старых компьютерах и представляет собой 25-пиновый COM-порт.

На периферийных устройствах обычно используется 36-контактный микроразъем ленточного типа Centronics (IEEE 1284-B), поэтому кабели для подключения периферийных устройств к компьютеру по параллельному порту обычно выполняются с 25-контактным разъёмом DB-25-male на одной стороне и 36-контактным IEEE 1284-B на другой (AB-кабель). Изредка применяется AC-кабель с 36-контактным разъемом MiniCentronics (IEEE 1284-C) .

Существуют также CC-кабеля с разъёмами MiniCentronics на обоих концах, предназначенные для подключения приборов в стандарте IEEE 1284-II, который применяется редко.

Длина соединительного кабеля не должна превышать 3 метров. Конструкция кабеля: витые пары в общем экране, либо витые пары в индивидуальных экранах. Изредка используются ленточные кабели.

Для подключения сканера, и некоторых других устройств используется кабель, у которого вместо разъема (IEEE 1284-B) установлен разъем DB-25-male. Обычно сканер оснащается вторым интерфейсом с разъемом DB-25-female (IEEE 1284-A) для подключения принтера (поскольку обычно компьютер оснащается только одним интерфейсом IEEE 1284).

Схемотехника сканера построена таким образом, чтобы при работе с принтером сканер прозрачно передавал данные с одного интерфейса на другой. Физический интерфейс

Интерфейс разъема

Базовый интерфейс Centronics является однонаправленным параллельным интерфейсом, содержит характерные для такого интерфейса сигнальные линии (8 для передачи данных, строб, линии состояния устройства).

Данные передаются в одну сторону: от компьютера к внешнему устройству. Но полностью однонаправленным его назвать нельзя. Так, 4 обратные линии используются для контроля за состоянием устройства. Centronics позволяет подключать одно устройство, поэтому для совместного очерёдного использования нескольких устройств требуется дополнительно применять селектор.

Скорость передачи данных может варьироваться и достигать 1,2 Мбит/с.

Стандартные шнуры провода кабеля Centronics IEEE 1284 Printer lpt:

Упрощённая таблица - схема сигналов интерфейса Centronics LPT - разъема

Контакты
DB-25 IEEE 1284-A
Контакты
Centronics IEEE 1284-B
Обозначение Примечание Функция
1 1 Strobe Маркер цикла передачи (выход) Управление Computer
2 2 Data Bit 1 Сигнал 1 (выход) Данные Computer
3 3 Data Bit 2 Сигнал 2 (выход) Данные Computer
4 4 Data Bit 3 Сигнал 3 (выход) Данные Computer
5 5 Data Bit 4 Сигнал 4 (выход) Данные Computer
6 6 Data Bit 5 Сигнал 5 (выход) Данные Computer
7 7 Data Bit 6 Сигнал 6 (выход) Данные Computer
8 8 Data Bit 7 Сигнал 7 (выход) Данные Computer
9 9 Data Bit 8 Сигнал 8 (выход) Данные Computer
10 10 Acknowledge Готовность принять (вход) Состояние Printer
11 11 Busy Занят (вход) Состояние Printer
12 12 Paper End Нет бумаги (вход) Состояние Printer
13 13 Select Выбор (вход) Состояние Printer
14 14 Auto Line Feed Автоподача (выход) Управление Computer
15 32 Error Ошибка (вход) Состояние Printer
16 31 Init Инициализация (выход) Initialize Printer (prime-low) Управление Computer
17 36 Select In Управление печатью (выход) Select Input Управление Computer
18-25 16-17, 19-30 GND Общий Земля

Распайку порта Centronics IEEE 1284 Printer Cable lpt - com9 можно и в виде картинки-изображения

Весьма советуем с ним познакомиться. Там Вы найдете много новых друзей. Кроме того, это наиболее быстрый и действенный способ связаться с администраторами проекта. Продолжает работать раздел Обновления антивирусов - всегда актуальные бесплатные обновления для Dr Web и NOD. Не успели что-то прочитать? Полное содержание бегущей строки можно найти по этой ссылке .

Работа с LPT-портом в Win NT/2000/XP

LPT-порт (L ine P rinT er) - порт параллельного интерфейса, который изначально создавался для подключения принтера. BIOS обеспечивает поддержку LPT-порта, необходимую для организации вывода по интерфейсу Centronics. Адресное пространство порта занимает диапазон &H378-&H37F

LPT-порт имеет 12 выходных и 5 входных линий. Такое довольно большое количество линий делает возможным подключение к порту несложной аппаратуры, возможно даже не имеющей своего микроконтроллера. Поэтому этот порт, несмотря на исчезновение принтеров с LPT-интерфейсом, активно используется для подключения простых программаторов микросхем памяти, JTAG-интерфейсов для перепрошивки (замены программного обеспечения) спутниковых рессиверов, DVD-плееров и другой электронной техники. Популярен LPT-порт и у моддеров, поскольку позволяет подключить к компьютеру LCD-дисплеи без изготовления сложных плат-интерфейсов.

Windows 2000/XP не позволяет приложениям обращаться к портам ввода-вывода напрямую. Для этого нужно использовать драйвер, работающий в KERNEL-mode (в режиме ядра операционной системы).

Ограничение доступа к портам ввода-вывода для обычных прикладных программ (работающих в пользовательском режиме) позволяет сделать операционную систему более стабильной. Хотя с другой стороны никто не мешает программисту написать драйвер, обращающийся к портам.

Интересно, что для процессора Intel x86 можно написать драйвер, использующий один из двух принципиально разных подходов. Первый вариант - драйвер сам обращается к портам, а прикладная программа только указывает драйверу, что делать. Этот вариант в общем случае является стандартным и предпочтительным.

Для решения проблемы существуют четыре популярных варианта драйверов, позволяющих прикладной программе обращаться к портам ввода-вывода: драйвер DLPortIO , драйвер UserPort , драйвер GiveIO.sis , драйвер Port95nt .

Все четыре варианта практически равноценны.

Драйвер DLPortIO

DLportIO - драйвер доступа к портам из пакета DriverLINX от Scientific Software Tools, Inc. (http://www.sstnet.com) в сокращённом виде (без описания и лишней документации). Для нормальной работы программ обслуживания LCD-индикаторов можно порекомендовать именно этот вариант драйвера .

Собственно драйвер состоит из двух составляющих:
. DLPortIO.dll - Win32 DLL, обеспечивающая аппаратные функции ввода/вывода и
. DLPortIO.sys - драйвер для WinNT, работающий в режиме ядра ОС (не требуется для Win95/98)

В установочном пакете драйвера, помимо этих двух компонентов, есть ещё файл Install.exe, перемещающий два вышеназванных в папку драйверов Windows и регистрирующий их в системе.

Больше писать про этот драйвер и нечего. Настройка не требуется. Скачали, установили, пользуемся. Не забываем заглянуть в конец статьи и почитать обеспечения работоспособности LPT-порта.

Установка элементарная - запускаем файл Install.exe, устанавливаем. По окончанию установки заглядываем в папку C:\Windows\System32\drivers и проверяем наличие двух файлов драйвера (DLPortIO.sys и DLPortIO.dll). Если видим, что эти файлы так и не скопировались, берем их из установочного пакета и копируем вручную. Не переживайте, с компьютером ничего плохого не случится. Перегружаем компьютер и работаем с LPT-портом.

Если вдруг, в результате манипуляций с оборудованием, вы получите от драйвера сообщение такого плана: "dlportio.sys device driver not loaded. Port I/O will have no effect", не стоит паниковать. Исправляется эта проблема так:
. Запускаем regedit.
. Заходим в реестре в ветку HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\ .
. В папке dlportio изменяем значение параметра Start на 1 .
. Перезагружаем компьютер.

Драйвер UserPort

Драйвер UserPort открывает доступ к портам в Win NT/2000/XP для программ. Этим вариантом драйвера LPT-порта чаще всего пользуются "технари", работающие с программаторами и JTAG"ами, поскольку драйвер имеет хоть какие-то конфигурирующие настройки. Для работы программ обслуживания LCD-индикаторов его так же можно использовать.

В архиве драйвера имеются три файла:
. UserPort.sys - драйвер для WinNT, работающий в режиме ядра ОС,
. UserPort.exe - программа для настройки драйвера и
. UserPort.pdf - файл описания.

Установка UserPort:
. 1. Распакуйте архив в отдельную папку.
. 2. Скопируйте файл UserPort.sys в C:\Windows\System32\drivers

Настройка UserPort:
. Запустите UserPort.exe.
. Перед нами появится панель с 2-мя окошками.

Левое окошко относится к работе программы в ДОС окне, правое на полном экране. По умолчанию в них прописаны номера портов LPT - все их можно удалить с помощью кнопки "Remove". В оба окна нужно вписать нужные номера портов, которые планируется использовать.

Для использования с драйвера с большинством программаторов, JTAG"ов и программ обслуживания дисплеев, добавьте в левую колонку следующие параметры:
378 , 379 и 37A для LPT1
278 , 279 и 27A для LPT2 (Если в BIOS"е переназначен адрес LPT-порта).

Поясню, что означают цифры. 0x378 - это адрес порта.
. Адрес 0x378 называется базовым и служит для записи и чтения данных в порт и из порта, по шине данных D0-D7 .
. Адрес 0x379 (базовый+1) предназначен для чтения битов состояния из устройства, подключеного к LPT-порту.
. Адрес 0x37A (базовый+2) служит для записи битов управления устройства, подключенного к LPT-порту.

Добавляем так:
0x378-0x378
0x37A-0x37A



Добавлять адреса порта в список нужно через окно ввода и с помощью кнопки "Add". Адрес 0x379 чаще всего не нужен и его можно не вписывать, поскольку он предназначен для чтения битов состояния из устройства, подключеного к LPT-порту, а большинство устройств (программаторы, JTAG"и и LCD-индикаторы тем более) сигналы состояния не формируют. При желании можно наоборот вписать весь диапазон адресов, отведённых системой под LPT-порт 0x378-0x37F .

Заходим в Панель Управления , Система , выбираем закладку Оборудование , Диспетчер устройств , заходим в Порты (COM и LPT) и смотрим свойства LPT порта, по которому вы хотите установить соединение. В Свойствах открываем закладку Ресурсы и смотрим значение параметра Диапазон ввода/вывода (I/O) . (Обычно в Windows XP оно равно 378 - 37F )

После формирования списка адресов, нужно нажать кнопку "Start", драйвер будет запущен и появится сообщение:



Затем нажать кнопку "Update", при этом драйвер будет зарегистрирован в системе, затем "Exit". Разумеется, кнопку "Stop", пока мы пользуемся драйвером, нажимать не нужно.

Если при нажатии кнопки "Update" система уходит в перезагрузку, нужно пробовать запускать регистрацию драйвера в системе с правами администратора или попытаться временно отключить файрволл или антивирус, которые могут блокировать вмешательство в системные процессы. Если что-то не получилось, читайте UserPort.pdf

Для проверки, появился ли доступ к портам, можно запустить программу "lpt-test.exe" .

После старта программы появится окно со следующим содержанием:



Отсутствие сообщения "Тестируется порт LPT (Адрес XXXh)" и последующих за ним строк говорит о том, что драйвер не работает.

Эта программа просто посылает в регистр данных Dx и регистр управления Ux порта LPT различные числа, а потом их же считывает. Регистр статуса Sx порта LPT только считывается. На экран выводится номер и адрес тестируемого порта LPT. Если порт исправный, то для регистров Dx и Ux не должно выдаваться никаких сообщений.



LPT-TEST v1.03 1995-2003 Copyright (C) С.Б.Алеманов. Москва "БИНАР".
Во время тестирования к портам не должно быть подключено периферийных устройств.
Dx - рег. данных (out), Ux - рег. управления (out), Sx - рег. статуса (inp).

Тестируется порт LPT1 (Адрес 378h)
2-й контакт (D0) - нет "1"
3-й контакт (D1) - нет "1"
4-й контакт (D2) - нет "1"
5-й контакт (D3) - нет "1"
6-й контакт (D4) - нет "1"
7-й контакт (D5) - нет "1"
8-й контакт (D6) - нет "1"
9-й контакт (D7) - нет "1"
1-й контакт (U0) - нет "1"
14-й контакт (U1) - нет "1"
17-й контакт (U3) - нет "1"
1-й контакт (U0) - нет "0"
14-й контакт (U1) - нет "0"
17-й контакт (U3) - нет "0"
15-й контакт (S3) - нет "0"


Если регистры Dx или Ux неисправны, то выводится сообщение "нет 0" или "нет 1" и указывается номер контакта на LPT-разъеме (сигналы на этом контакте можно посмотреть осциллографом). На входе регистра статуса Sx может быть как "0" так и "1", но обычно, когда к порту LPT ничего не подключено, на всех входах регистра статуса имеется "1". Появление же на входе регистра статуса "0" может являться признаком того, что вход пробит, если раньше там всегда была "1".
На некоторых машинах, если регистр данных или регистр управления неисправны, то доступ к LPT-порту вообще не появляется. Видимо, BIOS при включении компьютера тестирует порт LPT и, если он неисправный, то отключает его.

Если возникают проблемы, возможно, работе мешают какие-то драйвера, периодически посылая импульсы в порт LPT (это можно увидеть осциллографом). Например, можно в настройках принтера отключиться от порта LPT:
выключить LPT1: Порт принтера
включить FILE: Печатать в файл

После того, как все проблемы устранены и тест пройден, должен появиться доступ к портам и можно запускать программу, использующую LPT-порт. В противном случае устройство, подключеное к порту на такой машине работать не будет.

Драйвер GiveIO.sys

В далеком 1996 году американский программист Дейл Робертс, провел серию экспериментов, результатом которых стал драйвер GiveIO.sys . До сих пор этот драйвер остается одним из популярных инструментов, позволяющих прикладной программе обращаться к портам ввода-вывода.

Сам автор драйвера настоятельно рекомендует использовать этот драйвер только в отладочных целях. Окончательная версия прикладной программы должна вместо самостоятельного обращения к портам ввода-вывода, поручить это дело драйверу, написанному специально для этих целей. Драйвер должен вести себя "корректно", проверяя, не используется ли уже устройство каким-нибудь другим приложением.

Однако, если вы абсолютно уверены в том, что требуемые порты ввода-вывода никто кроме вас не использует (например, у вас нет принтера, подключенного к LPT), вы можете спокойно пользоваться драйвером GiveIO.sys.

Установка драйвера :

1. Скачайте архив, распакуйте и скопируйте файл GiveIO.sys в каталог C:\Windows\System32\Drivers (подразумевается, что ваша Windows установлена в каталог C:\Windows) .
. 2. Запустите файл install.reg. На экране появится следующее сообщение:


. 3. Отвечаем утвердительно. При этом появится сообщение об успешном внесении информации в реестр. При желании, можно убедиться в этом. Запускаем редактор реестра regedit.exe и в ветви HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\giveio проверяем наличие следующих записей:


. 4. Перегружаем компьютер и проверяем работу программ, пользующихся драйвером.

Драйвером GiveIO.sys народ активно пользуется, и, со временем, появились и другие варианты его установки .

Например - драйвер GiveIO.sys при наличии файла с "информацией об оборудовании" GiveIO.inf можно установить через апплет "Установка оборудования".




Драйвер GiveIO.sys мы покажем операционной системе, чтобы она поверила в существование оборудования "GiveIO".

Скачать комплект файлов для такого варианта установки драйвера GiveIO.sys (giveio_sys_v2.rar - 78kb). Архив содержит файлы GiveIO.sys и GiveIO.inf, а так же подробную инструкцию по установке с иллюстрациями.

Помимо вариантов "ручной" установки драйвера, написано несколько вариантов инсталлятора, выполняющего установку в автоматическом режиме.

Скачать комплект файлов для автоматической установки драйвера GiveIO.sys (giveio_sys_install.rar - 28kb). Архив содержит файлы GiveIO.sys и instdrv.exe, а так же файл remove-giveio.cmd, с помощью которого драйвер GiveIO.sys можно удалить из системы.

Драйвер Port95nt

Термин "драйвер Port95nt" здесь будет не совсем корректен. По сути, это тот же драйвер DLPortIO из пакета DriverLINX от Scientific Software Tools, Inc , только в полном варианте, с парой утилит управления портом, с описанием и множеством примеров для программистов. Рядовому пользователю никакой пользы от дополнительных компонентов нет, а компоненты драйвера DLPortIO.sys и DLPortIO.dll абсолютно такие же, как и в сокращённой версии.

Упомянул о Port95nt, как о драйвере, по двум причинам. Первая - для полноты перечня встречающихся в интернете упоминаний о драйверах LPT-порта.

Вторая причина - в некоторых случаях могут быть проблемы с установкой сокращённой версии DLPortIO под WinXP. Обычно, но нечасто, это происходит в урезанных "авторских" сборках WinXP. В таком случае можно взять полную версию инсталлятора (1.5МБ). Хотя, по моему мнению, быстрее получится вручную положить в нужную папку DLPortIO.sys и DLPortIO.dll, чем заморачиваться с подбором инсталлятора, который сможет это сделать за вас.

Дополнительные меры

Кроме установки одного из вышеназванных драйверов, для нормальной работы порта LPT под ОС WinXP необходимо сделать правку реестра с помощью REG-файла xp_stop_polling.reg (xp_stop_polling.rar - 0,48kb)

Под WinXP иногда нестабильно работают устройства, использующие LPT-порт. Причиной таких сбоев может быть работа подсистемы Plug-and-Play (PnP) в Windows, периодически опрашивающей LPT с целью обнаружения подключенных устройств. Такой опрос производится при загрузке системы, но оно может происходить и при работе. К сожалению, драйвер DLportIO.sys и другие варианты драйверов не блокируют доступ к LPT от других программ при работе с портом клиента данного драйвера и подсистема PnP уверена, что порт не занят, обращается к нему и нарушает работу внешних устройств. Для устранения проблемы и служит REG-файл xp_stop_polling.reg . Этот файл прописывает в реестре Windows ключ, запрещающий такой опрос (poll) во время работы системы.

Помимо установки драйвера и ограничения одновременного доступа к порту для программ, для обеспечения аппаратной совместимости и нормальной работы оборудования с LPT-портом, необходимо в BIOS выставить правильный адрес и режим работы порта ("Normal", SPP или ЕРР, но не ECP).

Конфигурированию через BIOS Setup подлежат следующие параметры:

Базовый адрес, который может иметь значение 378h, 278h и 3BCh. При инициализации BIOS проверяет наличие портов по адресам именно в этом порядке и, соответственно, присваивает обнаруженным портам логические имена LPT1, LPT2, LPT3. Адрес 3BCh имеет адаптер порта, расположенный на плате MDA или HGC (предшественники современных видеокарт). Большинство портов по умолчанию конфигурируются на адрес 378h и могут переключаться на 278h.

Используемая линия запроса прерывания, для LPT1 обычно используется IRQ7, для LPT2 - IRQ5. Во многих "настольных" применениях прерывания от принтера не используются, и этот дефицитный ресурс PC можно сэкономить. Однако при использовании скоростных режимов ЕСР (Fast Centronics) работа по прерываниям может заметно повысить производительность и снизить загрузку процессора.

В то же время, режим ЕСР нельзя использовать с устройствами, требующими жёстких таймингов (программаторами и JTAG-интерфейсами).

В завершение немного о терминологии :

. SPP (Standard Parallel Port - стандартный параллельный порт). Нередко, для упрощения понимания, в BIOS"е обозначается термином "Normal ".
. EPP (Enhanced Parallel Port - расширенный параллельный порт) - скоростной двунаправленный вариант интерфейса. Изменено назначение некоторых сигналов, введена возможность адресации нескольких логических устройств и 8-разрядного ввода данных, 16-байтовый аппаратный FIFO-буфер. Максимальная скорость обмена - до 2 Мб/с.
. ECP (Enhanced Capability Port - порт с расширенными возможностями) - интеллектуальный вариант EPP. Введена возможность разделения передаваемой информации на команды и данные, поддержка DMA и сжатия передаваемых данных методом RLE (Run-Length Encoding - кодирование повторяющихся серий).

На Хабре об управлении лампой через интернет, появилась идея управлять освещением дома с компьютера, а так как у меня уже настроено управление компьютером с сотового телефона, то это значит, что и светом можно будет управлять с того же телефона. После демонстрации статьи одному из моих коллег по работе, он сказал, что ему это как раз и нужно. Так как он часто за фильмами, которые смотрит на компьютере, засыпает. Компьютер через некоторое время после окончания фильма тоже засыпает и отключает монитор, а вот свет в комнате остается включённым. Т.е. было решено, что вещь это полезная, и я начал собирать информацию и детали для этого чуда.
Остальная информация под habracut (осторожно много картинок - трафик).

Схема устройства

За исходную схему была взята одна из схем , найденных в Internet и выглядела она вот так:

Но только с небольшим изменением: между 1-ым пином оптопары 4N25 и 2-ым пином LPT был добавлен резистор на 390 Ом, и еще добавлен светодиод для индикации включения. Схема была собрана в тестовом режиме, т.е. просто соединена проводами так как нужно и проверена. В этом варианте она просто включала и выключала старый советский фонарик.
Было решено, что если уже делать управление, то не для одного устройства, а минимум на 4 устройства (из расчёта: одна лампа на столе, люстра на два выключателя, запасная розетка). На данном этапе стало необходимо построение полной схемы устройства, начался выбор различных программ.
Были установлены:

  1. KiCAD
  2. Eagle
Посмотрев все их них я остановился на Eagle, так как в его библиотеке были «похожие» детали. Вот что получилось в нем:

На схеме использован порт DB9 т.е. обычный COM порт, это сделано из соображений экономии как места на плате, так и самих разъёмов (COM"вские у меня были), а так как мы будем использовать только 5 проводников, то этого нам хватит с запасом. Таким образом делаем еще и переходник с DB25 (LPT) на DB9 (COM), в моем случае делается он следующим образом:
LPT 2-9 pin = COM 1-8 pin - это управляющие пины данных;
LPT 18-25 pin (зачастую они соединены между собой) = COM 9 pin - это наша земля.
Так же в схеме используется дополнительное питание на 12В для питания реле, по плану это будет простое китайское зарядное или может быть крона на 9В (одно реле срабатывает нормально, надо проверить на 4 одновременно). Отдельное питание и гальваническая развязка с помощью оптопары используется для того чтобы обезопасить порт компьютера. При желании можно конечно запитаться от 12В блока питания компьютера, но это каждый делает сам и на свой страх и риск.

Необходимые детали для создания устройства
  1. COM порт - 1 шт
  2. коннектор питания - 1 шт
  3. светодиод зелёный - 4 шт
  4. оптопара 4n25 - 4 шт
  5. посадочное место под оптопару (у меня было только на 8 ног) - 4 шт
  6. резистор 390 Ом - 4 шт
  7. резистор 4,7 кОм - 4 шт
  8. транзистор КТ815Г - 4 шт
  9. реле HJR-3FF-S-Z - 4 шт
  10. зажимы на 3 контакта - 4 шт
  11. фольгированный текстолит

Подготовка схемы печатной платы

Попытавшись использовать Eagle для подготовки печатной платы я понял, что это будет сложновато и решил найти более простой вариант. Этим вариантом стала программа sprint layout 5 пусть она и в исполнении для windows, но без проблем запускается в wine под linux. Интерфейс у программы интуитивно понятный, на русском языке и в программе имеется достаточно понятная помощь (help). Поэтому все дальнейшие действия по разработке печатной платы производились в sprint layout 5 (далее SL5).
Хоть и многие используют данную программу для разработки плат своих устройств, в ней не оказалось необходимых мне деталей (даже в куче скачанных коллекций макросов). Поэтому пришлось сначала создать недостающие детали:
  1. COM порт (тот что был не совпал с моим, по отверстиям крепления)
  2. гнездо питания
  3. зажим на три контакта
  4. реле HJR-3FF-S-Z
Вид этих деталей:

После добавления необходимых деталей началось само проектирование печатной платы. Проходило оно в несколько попыток, было их около пяти. Каждый вариант платы печатался на картоне прокалывались отверстия и в них вставлялись детали. Собственно так и было выяснено, что мой COM порт не совпадает с тем который был в SL5. Так же всплыла небольшая ошибка в схеме реле - реально корпус реле был сдвинут на 2-3 мм. Естественно все ошибки были исправлены.
На первом печатном варианте выяснилось еще и не правильное подключение транзистора, были перепутаны два контакта.
После всех исправлений и подгонок получилось плата следующего вида:

В SL5 есть функция «Фотовид» для просмотра платы, вот как она выглядит в нем:

На финальном варианте платы будут еще немного подправлены дорожки, а в остальном она выглядит так же.

В SL5 так же есть удобный вариант печати платы, можно скрывать не нужные слои и выбирать цвет печати каждого слоя, что очень пригодилось.

Подготовка печатной платы

Плату решено было делать методом ЛУТ (лазерно-утюговая технология). Далее весь процесс в фото.

Вырезаем необходимого размера кусок текстолита.

Берем самую мелкую наждачку и аккуратно зачищаем медную поверхность.

После зачистки поверхности её необходимо промыть и обезжирить. Промывать можно водой, а обезжиривать ацетоном (в моем случае это был растворитель 646).
Далее печатаем на лазерном принтере на мелованной бумаге нашу плату, не забыв в принтере установить самую жирную печать (без экономии тонера). Этот вариант получился немного не удачным, так как размазался тонер, но другая попытка была в самый раз.

Теперь необходимо перенести рисунок с бумаги на текстолит. Для этого вырезаем рисунок и прикладываем его к текстолиту, стараемся его выровнять как нужно и после этого прогреваем утюгом. Необходимо тщательно прогреть всю поверхность, что бы тонер расплавился и прилип к медной поверхности. Потом даем плате немного остыть и идём мочить её под струей воды. Когда бумага достаточно хорошо промокнет её необходимо отделить от платы. На плате останется только прилипший тонер. Выглядит это так:

Далее необходимо подготовить раствор для травления. Я использовал для этого хлорное железо. На банке с хлорным железом написано, что раствор необходимо делать 1 к 3. Я немного отступил от этого и сделал 60 г хлорного железа на 240 г воды, т.е. получилось 1 к 4, не смотря на это травление платы происходило нормально, только немного медленнее. Обратите внимание на то, что процесс растворения сухого хлорного железа в воде идёт с выделением тепла, поэтому всыпать его в воду необходимо небольшими порциями и размешивать. Естественно для травления необходимо использовать не металлическую посуду, в моем случае это была пластиковая ёмкость (вроде от селёдки). У меня получился вот такой раствор:

Перед тем как опустить плату в раствор, я с помощью скотча приклеил к её обратной стороне леску, что бы было удобнее доставать и переворачивать плату. Если раствор попадет на руки надо быстро его смыть с мылом (мыло его нейтрализует), но пятна могут все равно остаться, все зависит от конкретных условий. Пятна с одежды вообще не выводятся, но мне повезло этого не проверить на себе. Погружать плату в раствор надо медью вниз и не всю плашмя, а под углом. Время от времени плату желательно очищать от отработки, так как она мешает дальнейшему травлению. Делать это можно при помощи ватных палочек.

Весь процесс травления у меня занял 45 минут, хватило бы и 40 минут, но я был просто занят ещё одним делом.
После травления промываем плату с мылом отрываем скотч с леской и получаем:

Внимание! Не выливайте раствор хлорного железа в раковину (канализацию) - это может повредить металлические детали раковины, да и вообще раствор может ещё пригодиться.
Далее нам необходимо смыть тонер, это успешно делается тем же растворителем 646, который использовался для обезжиривания (долгий контакт растворителя с кожей может её повредить).

Следующим шагом является сверление отверстий. У меня на плате предусмотрены были отверстия 1мм и 1.5 мм изначально, так как найти более тонких свёрл не удалось. Так же найти у нас в городе цанговый патрон для крепления его на электромоторчик не удалось, поэтому все делалось большой дрелью.

Первое устройство подошло

На первый раз я взял только два сверла, а при использовании такой дрели этого оказалось мало. Одно сверло сломалось, а второе погнулось. Все что я успел просверлить в первый день:

На следующий день я купил пять свёрл. И их как раз хватило, так как если они не ломаются (кстати из пятёрки сломал только одно), то тупятся, а при сверлении тупыми - портятся дорожки, медь начинает отслаиваться. После полного сверления платы получаем:

После сверления необходимо провести лужение платы. Для этого я использовал старый способ - паяльник, флюс ТАГС и олово. Хотелось попробовать с использованием сплава Розе, но его не найти у нас в городе.

После лужения получаем следующий результат:

Далее необходимо промыть плату для удаления остатков флюса, так как ТАГС водоотмывной, то делать это можно или водой или спиртом. Я сделал что-то среднее - отмывал старой водкой и протирал ватными палочками. После всех этих действий наша плата готова.

Монтаж деталей

Для проверки правильности платы изначально собираю только одну(из четырёх) линию деталей, мало ли где закралась ошибка.

После монтажа деталей идём и подключаем устройство к компьютеру через LPT, для этого спаян переходник с DB25(LPT) на DB9(COM) в следующем виде:

  • 2 пин DB25 к 1 пину DB9
  • 3 пин DB25 к 2 пину DB9
  • 4 пин DB25 к 3 пину DB9
  • 5 пин DB25 к 4 пину DB9
  • 6 пин DB25 к 5 пину DB9
  • 7 пин DB25 к 6 пину DB9
  • 8 пин DB25 к 7 пину DB9
  • 21 пин DB25 (можно любой с 18 по 25) к 9 пину DB9
Так как в качестве провода использовалась обычная витая пара, то не хватило одного проводка, но для данного устройства достаточно только пяти проводов, так что данный вариант подходит. В качестве включаемой нагрузки у нас выступает простой советский фонарик. Ну и в качестве блока питания - универсальный китайский блок питания (4 коннектора и питание от 3 до 12 в). Вот все в сборе:

А вот уже устройство работает:

На этом закончился ещё один вечер и монтаж остальных деталей был оставлен на следующий день.

А вот и уже полностью собранное устройство:

Ну и небольшое видео о том как это работает (качество не очень, не было чем снять нормально)

Вот и все, осталось только найти нормальный корпус для устройства и запускать его в дело.

Программная часть

Естественно для управления LPT портом нужно какое-то ПО, но так как у меня дома linux, то было решено просто написать простейшую программку самому, а в последствии её уже дописать и адаптировать как надо. Выглядела она примерно так:
#include
#include
#include
#include
#define BASE 0x378
#define TIME 100000
int main ()
{
int x = 0x0F;
int y = 0x00;
if (ioperm (BASE, 1, 1))
{
perror ("ioperm()");
exit (77);
}
outb (x, BASE);
return 0;
}

Данная программка отправляет в LPT порт 0x0F = 00001111, т.е. подает 1 на 2-5 пины (Data0-Data3), а это и есть наше управляющее напряжение между 2-5 пинами и землей (18-25 пины), таким образом будут включаться все четыре реле. Точно так же действует программа для отправки 0x00 в порт для отключения, просто вместо x отправляется y - outb (y, BASE). Еще можно прочитать состояние порта:
#define BASEPORT 0x378 /* lp1 */
...
printf("статус: %d\n", inb(BASEPORT));
...

Единственный нюанс этой программки в том, что её необходимо выполнять от root, так как простому пользователю не доступна функция ioperm. Думаю, как решать такую проблему можно не рассказывать, каждый выберет более подходящий ему вариант.

В последствии программа была доработана так, что бы передавая ей параметры командной строки можно было указывать с каким устройством и что сделать.
Вывод «sw --help»:
Программа для управления реле через LPT порт.
У программы может быть один или два параметра.
Формат параметров: sw [номер устройства] [действие]
номер устройства - от 1 до 8
действие - "on", "off", "st" - включение, выключение, статус
Пример: "sw 2 on" для включения второго устройства или "sw --help" для вывода помощи

PS если кому понадобится, то потом могу где-нибудь выложить файл схемы платы в sl5 и исходник программки управления.

Итак, настало время написать простую программу, иллюстрирующую приемы чтения и записи данных в LPT порт. Пока напишем ее в консольном варианте, дабы на этапе понимания и разбора этой программы не пришлось "копаться" в дебрях кода под Windows (не переживайте, следующая статья будет посвящена как раз приложению c визуальным интерфейсом).


Прежде чем двигаться дальше и писать программу, необходимо разобраться с LPT портом, посмотреть из чего он состоит и как нам воспользоваться им в своих целях. Если говорить на бытовом уровне, то можно сказать, что LPT порт это набор контактов, на которых мы можем установить напряжение 0 или +5 В (логическая 0 и 1) из программы или это может сделать внешнее устройство снаружи.



Давайте разберемся, какими контактами мы можем оперировать, а какими нет. В этом нам поможет рисунок ниже (его рисовал не я, автор мне неизвестен. Но он уж больно хорош, я и сам им постоянно пользуюсь).

Из рисунка видно, что выводы порта можно разделить на четыре группы: это "земляные" выводы. Они обозначены черным цветом (контакты 18-25). Все они соеденены между собой, поэтому для своих разработок в качестве земли можно использовать любой из них.

Красным цветом обозначены выводы так называемого регистра Data (контакты 2-9). Под регистром будем понимать (на бытовом уровне) объдинение группы контактов LPT порта. В регистре Data их 8 штук. Это самый толковый регистр - он позволяет нам как из программы, так и из внешнего устройства установить на его контактах лигическую 0 или 1, т.е. он двунаправленный. Именно его мы и использовали в нашей первой программе Port.exe - подключали светодиод ко 2-му выводу порта (как теперь видно, этот вывод принадлежит регистру Data, является его нулевым битом) и 25 выводу (земля), и спомощью программы управляли подачей напряжения на вывод 2 относительно земли. Чтобы обращаться к этому регистру, надо знать его адрес: 0x378 - в 16-ричной системе или 888 в десятичной.


На рисунке написано &H378 - это тоже самое что и 0x378, просто первое обозначение присуще языку Pasсal и ему подобным, мы же пишем на Си.


Опять вспоминая программу Port.exe , заметим, что обращались мы к регистру с помощью следующей функции _outp(Address, 0); , где переменная Address была предварительно определена как 888. Теперь понятно, что этим мы указывали функции _outp() , что мы хотим работать именно с регистром Data.

Продолжим рассмотрение порта. Осталось еще два регистра. Следующим будет регистр Status (контакты 10-13, 15). Это однонаправленный регистр. Управлять им можно только "снаружи", через внешнее устройство (имеется в виду изменять данные на нем; читать можно из любого регистра в любую строну). Он имеет адрес 0x379 - в 16-ричной системе или 889 в десятичной. И регистр Control (контакты 1, 14, 16-17). Он имеет всего 4 контакта и может управляться только программой. Его адрес: 890 в десятичной системе.



Теперь рассмотрим, а как происходит запись и чтение данных в регистры LPT порта, т.е. как нам установить на нужных выводах 0 или 1.


Запись/чтение данных в регистр Data

Итак, рассмотрим сразу практическую задачу. Хочу чтобы на выводе LPT порта под номером 3 (бит D1 регистра Data ) была установлена логическая 1 (т.е. чтобы между ним и землей было +5 В) и на остальных выводах этого регистра (2,4-9 выводы порта) были нули. Пишем код:

Int Address = 888; int data = 2; Out32(Address, data);

Я использовал функцию Out32() библиотеки inpout32.dll , будем привыкать к ней, т.к. дальнейшие примеры будем разбирать именно на этой библиотеке. Если этот код выполнить, то получится что на выводе порта 3 есть +5 В, а на 2,4-9 "висит" ноль. Как это получилось?

Начнем разбираться: первым параметром функции Out32() мы передаем число 888. Как вы уже знаете, это адрес регистра Data LPT порта. Теперь функция знает куда ей писать данные. Далее вторым параметром мы передаем число 2, т.е. значение для записи в порт. Прошу обратить внимание, что двоика в десятичной системе счисления. Что происходит далее? Для лучшей визуализации процесса, переводим число 2 из десятичной в двоичную систему счисления. Каждый разряд двоичного числа справо на лево записывается по порядку в регистр начиная с младшего разряда D0 (вывод 2 порта) и заканчивая старшим D7 (вывод 9). Если вы переведете число 2 из десятичной в двоичную систему счисленияи дополните число по 8 разрядов (по числу разрядов в регистре) то получите 00000010 . Нулевой разряд двоичного числа - 0 (самую правый) записывается в D0, далее 1 записывается в D1. И так до конца, все 8 разрядов.

Ну что, устали немного пока прочитали? Сейчас станет понятнее. Давайте в регистр Data запишем число 245. Пишем код:

Int Address = 888; int data = 245; Out32(Address, data);

Опять переводим 245 в двоичную систему счисления и справо на лево записываем разряды числа в соответсвующие биты регистра. В итоге получим, что на выводах LPT порта под номерами 2,4,6-9 присутствует напряжение +5 В, на выводах 3,5 - ноль.

Ну что, теперь я думаю, с записью данных в регистр Data мы разобрались. Надо отметить, что диапозон десятичных чисел, которые можно записать в регистр Data лежит в пределах от 0 до 255 . Регистр он у нас 8-ми разрядный, значит максимальное число комбинации 0 и 1 на его выводах составляет 2 8 -1=256-1=255.


Чтение данных

Теперь давайте считаем ранее записанные данные в порт, а именно узнаем текущий статс регистра Data . Мы хотим узнать, на каких выводах регистра Data сейчас высокий уровень напряжения, а на каких низкий. Помните, выше мы записали в порт число 245? Давайте его сейчас получим из порта. Пишем код:

Int Address = 888; int data; data = Inp32(Address);

Inp32() - это функция для чтения данных из порта библиотеки inpout32.dll . Единственным параметром для нее является адрес того регистра, откуда мы хотим прочесть данные. На выходе она возвращает десятичное число, соответствующее текущему содержомому регистра. Выполнив этот код, переменная data будет содержать число 245. Что это значит? Чтобы разобраться, переводим число 245 из десятичной в двоичную и смело можем сказать что на выводах порта 2,4,6-9 сейчас +5 В а на выводах 3,5 0 В. (см. рисунок выше)


Запись/чтение данных в регистр Control

Теперь поуправляем регистром Control. Он однонаправленный, данные в него может записать только наша программа. Обратите внимание на несколько особенностей этого регистра. Во-первых, он содержит всего четыре рабочих вывода. Значит в него можно записать число в диапозоне от 0 до 2 4 -1=16-1=15. Во-вторых, он имеет очень непрятную особенность: некоторые из его выводов инвертированы, т.е. если вы на этот вывод пишете 1, то на ней устанавливается 0. И наоборот, читаете 1, а на самом деле там 0. Поэтому, значение записываемых данных и читаемых данных не совсем очевидны. Приведу пример записи числа в регистр Control. Пишем код:

Int Address = 890; int data = 10; Out32(Address, data);

И пример чтения:

Int Address = 890; int data; data = Inp32(Address);

Запись/чтение данных в регистр Status

Наконец, добрались до регистра Status . Он однонаправленный, данные в него может записать только внешнее устройство , т.е. мы в программе можем только читать содержимое этого регистра. Причитав данные из Status , и переведя их в двоичное число, сразу довольно трудно понять что же реально творится с напряжениями на выходах этого регистра. Во-первых, он тоже имеет инвертированные выводы, а во-вторых рабочими являются биты под номерами 4-7, а 0-3 не используются, и следовательно число записывается довольно хитро.

Возникает вопрос, а как эти данные на нем установить? Довольно просто. В качестве внешнего устройства, пока, будете выступать вы. Выполните такой код.

Int Address = 889; int data; data = Inp32(Address);

Вы получите некоторое число. Теперь возмите проводник и соедините им любой из земляных выводов порта (18-25) с каким-нибудь выводом регистра Status (10-13, 15), например с десятым. И снова выполните чтение. Вы получите другое число. Уберите проводник. Прочитав, получете исходное число. Как это работает? Исходно, на всех выводах этого регистра находится высокий уровень напряжения +5 В. Когда мы соеденили один из его выводов с землей, то на нем, соответственно, напряжение стало равным нулю, т.е. логический ноль. Можно попробовать замыкать и другие выводы регистра Status на землю, замыкать сразу несколько.

Следует заметить, что при таких опытах с регистром Status возникает не совсем понятная ситуация с другими выводами порта LPT. После первого замыкания выводов Status , начинают мигать выводы Data и Control . Это связано с тем, что порт LPT предназначен для подключения принтера, а выводы Status он использует, для того чтобы сообщить компьютеру некоторую служебную информацию. Изменения на выводах Status регестрирует системный драйвер операционной системы. Он же проводит и ответные действия, для нас наблюдаемые в виде периодического изменения состояния других выводов. Тут уж ни чего не поделаешь. Я обычно, просто в начале работы с портом далаю замыкание какой-нибудь линии регистра Status на землю и жду примерно минуту, пока драйвер не "утихомирится". После этого порт свободен, и новые операции над регистром Status не приводят к неконтролируемым процессам в порту.


© Дмитрий Иванов
2005-2006

Компьютер обрабатывает сигналы параллельными потоками, поэтому ему легче «общаться» с параллельными, а не с последовательными внешними портами. В 1984 г. в составе IBM PC впервые появился параллельный порт. Задуман он был как средство подключения матричных принтеров, отсюда и название LPT - Line PrinTer или Line Printer Terminal. В дальнейшем для принтеров стали использовать быстродействующий интерфейс USB, а LPT-порт начал постепенно вытесняться из компьютерных спецификаций. Остряки сравнивают LPT с чемоданом без ручки - и выбросить жалко, и тащить невозможно. Тем не менее, «ветеран» ещё на многое способен, если, конечно, он присутствует в конкретном компьютере.

Разъём LPT-порта имеет 25 контактов. Нормой «де-факто» считается розетка DB-25F в компьютере и вилка DB-25M в ответном кабеле (Табл. 4.2). Нумерация контактов вилок и розеток зеркальная (Рис. 4.7, а, б).

Таблица 4.2. Раскладка сигналов в 25-контактном разъёме LPT-порта

Расшифровка

Направление

Вход/выход

Вход/выход

Подтверждение

Готовность

Нет бумаги

Автоперенос

Вход/выход

Инициализация

Вход/выход

Выбор входа

Вход/выход

Рис. 4.7. Внешний вид спереди 25-контактных разъёмов LPT-порта: а) розетка DB-25F в компьютере; б) вилка DB-25M в соединительном кабеле.

Первоначально линии LPT-порта были однонаправленными SPP (Standard Parallel Port). Часть из них работала только на вход, часть - только на выход, что по набору сигналов и протоколу обмена соответствовало принтерному интерфейсу «Centronics». В 1994 г. был утверждён новый стандарт параллельного интерфейса IEEE 1284, предусматривающий двунаправленные линии и три режима работы: SPP, EPP (Enhanced Parallel Port), ECP (Extended Capabilities Port).

Уровни электрических сигналов LPT-порта совпадают с обычными «пятивольтовыми» логическими микросхемами. Раньше в компьютерах применялись буферные TTJl-микросхемы серии 74LSxx, позднее - КМОП-микросхемы и БИС, примерно эквивалентные серии 74ACxx. В последнем случае можно ориентировочно считать, что НИЗКИЙ уровень равен 0.1..0.2 В, а ВЫСОКИЙ - 4.5…4.9 В.

Стандартом регламентируется нагрузка 14 мА по каждому выходу при сохранении напряжения не менее +2.4 В ВЫСОКОГО и не более +0.4 В НИЗКОГО уровня. Однако в разных материнских платах выходные буферы LPT-порта могут иметь разную нагрузочную способность, в том числе и ниже стандарта («слабый» порт).

Требования к соединительным кабелям, подключаемым к LPT-порту:

Сигнальные провода должны быть свиты в пары с общим проводом GND;

Каждая пара должна иметь импеданс 56…68 Ом в диапазоне частот 4… 16 M Гц;

Если применяется плоский ленточный кабель, то сигнальные провода должны физически чередоваться с общим проводом GND (локальные экраны);

Уровень перекрёстных помех между сигналами не более 10%;

Кабель должен иметь экран, покрывающий не менее 85% внешней поверхности. На концах кабеля экран должен быть окольцован и соединён с «земляным» контактом разъёма;

В разъёме кабеля можно запаять на контакты 1…17 последовательные резисторы C2-23 (OMJIT-O.125) сопротивлением 100…300 Ом (Рис. 4.8). Это позволит защитить компьютер от случайных коротких замыканий в нагрузке и уменьшить высокочастотный «звон» на фронтах сигналов.

Рис. 4.8. Электрическая схема LPT-кабеля с «антизвонными» резисторами.

Схемы соединения MK с LPT-портом можно разделить на три группы:

Приём сигналов от компьютера (Рис. 4.9, а…з);

Передача сигналов в компьютер (Рис. 4.10, а…д);

Приём/передача сигналов одновременно (Рис. 4.11, a…e).

В схемах приняты некоторые упрощения. В качестве входного сигнала указывается в основном «DO», а в качестве выходного - «АСК», хотя могут быть и другие, перечисленные в Табл. 4.2. На каждом конкретном компьютере работоспособность самодельных схем необходимо проверять экспериментально, что связано с наличием «сильных» и «слабых» LPT-портов по нагрузочной способности.

Рис. 4.9. Схемы ввода сигналов из LPT-порта в MK (начало):

а) резистор R1 ограничивает входной ток. Элементы R2, C1 могут отсутствовать, но они уменьшают «звон» на фронтах сигналов при длинном кабеле;

б) буферный транзистор VT1 инвертирует сигнал. Диод VD1 не обязателен, но он защищает транзистор от ошибочной подачи большого отрицательного напряжения. Если не ставить резистор R2, то схема останется работоспособной, однако при отстыковке кабеля от LPT-порта возможны ложные срабатывания транзистора VT1 от внешних помех и наводок;

в) диод VD1 отсекает помехи и повышает порог срабатывания транзистора VT1. Резистор R1 надёжно закрываеттранзистор VT1 при НИЗКОМ уровне с LPT-порта;

г) буферный логический элемент DD1 имеет выход с открытым коллектором. Фронты сигналов формируются элементами R1, C1. Можно вместо инвертора DD1 поставить повторитель К155ЛП9, сделав соответствующие изменения в программе MK и компьютера;

д) триггер Шмитта DD1 (замена - К555ТЛ2) повышает помехоустойчивость. Чем меньше сопротивление резисторов R1, R2, тем больше крутизна фронтов сигнала. При отключённом кабеле от LPT-порта резистор R1 не даёт входу микросхемы DD1 «висеть в воздухе»;

е) последовательное включение двух логических элементов DD11, /)/)/.2увеличивает (восстанавливает) крутизну фронтов сигнала. Резистор R1 устраняет выбросы, «звон»;

Рис. 4.9. Схемы ввода сигналов из LPT-порта в MK (окончание):

ж) данные, поступающие от LPT-порта, предварительно помещаются в промежуточный регистр DD1. Запись производится при ВЫСОКОМ уровне на входе «С» микросхемы DD1, хранение - при НИЗКОМ. Такое решение устраняет помехи, поскольку в LPT-порт в зависимости от установленных в компьютере драйверов периодически могут выводиться случайные данные. Их устраняют программно, например, путём многократного считывания входного сигнала с линий MK;

з) буферизация LPT-порта мощными транзисторными ключами, находящимися в микросхеме DA1 фирмы Texas Instruments. Резисторы R1…R8 могут иметь в 10… 15 раз более низкие сопротивления, что позволяет подключить параллельно выходам микросхемы А4/другие узлы устройства.

Рис. 4.10. Схемы вывода сигналов из MK в LPT-порт (начало):

а) непосредственное подключение выхода MK без буферных элементов. Резисторы R1, R2 уменьшают отражение сигналов в линии. Кроме того, резистор R2 защищает выход MK от случайного короткого замыкания с цепью GND в проводах соединительного кабеля;

б) триггер Шмитта DD1 служит защитным буфером для MK при аварийной ситуации на выходе (короткое замыкание или подача большого напряжения);

в) микросхема DD1 имеет выход с открытым коллектором, что защищает её от короткого замыкания в проводах и разъёмах соединительного кабеля;

г) подача двух противофазных сигналов в компьютер. Цель - программная необходимость или организация дублирующего (контрольного) канала передачи данных;

д) опторазвязка на элементах HL1, BL1, которые применяются в компьютерных механических «мышах». Транзистор КГ/усиливает и инвертирует сигнал. Для нормальной работы устройства компьютер должен выставить ВЫСОКИЙ уровень на линии «D8».

Рис. 4.11. Комбинированные схемы ввода/вывода сигналов между MK и LPT-портом (начало):

а) если компьютер выставляет на линии «DO» ВЫСОКИЙ уровень, то MK в режиме выхода может генерировать сигнал «АСК» через резистор R1. Если MK переводится в режим входа, то компьютер может передавать ему данные по линии «DO» через диод VD1 при этом внутренний « pull-up» резистор MK формирует ВЫСОКИЙ уровень;

б) сигнал от LPT-порта вводится в MK через инвертор на транзисторе VT1 при этом компьютер должен выставить ВЫСОКИЙ уровень на линии «D2». Информация в MK вводится с линии «DO» через резистор R1 Высокое сопротивление резистора R1 физически развязывает входной и выходной каналы;

Рис. 4.11. Комбинированные схемы ввода/вывода сигналов между MK и LPT-портом (окончание):

б) сигнал от LPT-порта вводится в MK через инвертор на транзисторе VT1, при этом компьютер должен выставить НИЗКИЙ уровень на линии «DO». Информация в МК вводится через элементы R1, R3, VT2;

г) сигнал от LPT-порта вводится в MK через повторитель на транзисторе VT1, при этом компьютер должен выставить ВЫСОКИЙ уровень на линии «DO». Информация в MK вводится через повторитель на микросхеме DD1\

ж) сигналы «D0»…«D3» вводятся в MK при НИЗКОМ уровне на линии «INIT», при этом компьютер должен настроить линии «D4»…«D7» как входы. В настройках BIOS компьютера надо установить двунаправленный режим EPP или ЕСР для LPT-порта. Информация в компьютер из МК передаётся по линиям «D4»…«D7» при ВЫСОКОМ уровне на линии «INIT». Резистор R1 переводит выходы микросхемы DD1 в Z-состояние при отключённом кабеле от LPT-порта;

e) сигнал от MK в LPT-порт вводится через повторитель DD1.2, при этом компьютер должен выставить ВЫСОКИЙ уровень на линии «D2» и НИЗКИЙ уровень на линии «D5». Информация в MK вводится через повторитель DD1.1 при НИЗКОМ уровне налинии «D2». Стробирование сигналов по входам «Е1», «Е2» микросхемы DD1 повышает достоверность передачи данных.