Метод частотной коррекции стандарта RIAA. Фонокорректор RIAA-Paradise от «Три В Основные технические характеристики


Итак, подробно рассказываю, как самому сделать довольно качественный корректор, с хрустальными верхами, живым голосом и натуральным полновесным басом, т.е. именно тем, что отличает звучание винила от любого цифрового носителя музыки. Основное время на изготовление корректора у вас уйдет на поиск деталей, саму же конструкцию можно легко, даже не обладая опытом мастера-всёделкина, собрать за один воскресный день. Принципиальная схема качественного и простого в сборке и по деталям лампового корректора винила изображена на прилагаемой картинке. Корректор построен на сосредоточенной цепи коррекции по стандарту RIAA, оптимизирован по всем возможным для оптимизации параметрам относительно своего среднего класса и возможности подключения его к транзисторным усилителям со стандартным значением импеданса входов. Пусть вас не смущает моя средняя оценка этого корректора, эта оценка по абсолютной шкале звукового качества, где на нижней ступени находятся все известные вам бренды, например Сони, Маранц, Техникс, Крик, MF, да вообще почти все, что изготовлено из транзисторов, как и большинство ламповой техники средней стоимости от брендов и, тем более, от так называемых "росхайэндщиков".
Корректор построен на старых октальных лампах, которые можно легко найти на любом радиорынке и в большинстве фирм, торгующих советскими радиодеталями, т.е. эти лампы совсем не дефицитны, и даже выпускаются ламповыми заводами до сих пор. На зарубежное замахиваться не будем, подобные зарубежные лампы высшего звукового качества стоят очень дорого, так как все относящееся к электронным лампам на западе давно уже перешло в разряд фетиша. Нам желательны старые лампы производства МЭЛЗ, они обладают наилучшим звуком из отечественных, хотя стоит добавить, что зарубежные звучат еще лучше. На год изготовления внимания обращать не стоит, хотя чем старее, тем результат основательней. К лампам нужно купить керамические панельки для октальных ламп, они также не дефицит и продаются там же, где вы будете приобретать лампы. Все резисторы мощностью 0.5...1 Вт, подойдут марок С2-10,С2-29,МТ. Можно использовать и углеродистые резисторы ВС, которые применялись в старых ламповых радиоприемниках. Резисторы R3 и R6 желательно найти с точностью 1%, причем резистор R6 составлен последовательным соединением резисторов номиналами 30 к и 2 к. Конечно, в случае отсутствия этих серий, можно применить и распространенные МЛТ, или, из современных, углеродистые резисторы российского или импортного производства на указанную мощность, но качество звучания подсядет. Конденсаторы С1 и С8 электролитические, производства ELNA, HITACHI, RUBYCON, NICHICON, желательно звуковых серий. Ни в коем случае нельзя использовать Самсунги, Самюнги, Чемиконы и прочие подобные низкокачественные конденсаторы, которые почему то российские продавцы продают по соизмеримым ценам с качественными изделиями. Звук от такого соседства сразу станет грязным и разваленным. Конденсаторы С2,С3 нужно найти слюдяные, серий ССГ,СГМ,КСО,К31, с погрешностью не более 2%, хотя вполне можно попробовать и 5% допуск. Конденсатор С5 тоже желательно слюдяной, например ССГ, КСО номиналом 0.047...0.1мк, но за неимением подойдет бумажный К40У-9 или КБГ. Потому что главное, конечно, собрать схему, что бы она заработала, а в дальнейшем вы сможете реально улучшать её звучание, заменяя используемые вами детали на более качественные, например зарубежные аудиофильные. Конденсатор С6 электролитический, тех же производителей, что и первые электролиты, хотя можно добавить к тому списку и фирму Саньо, некоторые их конденсаторы с органическим диэлектриком очень достойно звучат. Конденсатор С7 желательно найти бумажный, К40У-9 на напряжение 200 Вольт, за неимением можно использовать полипропиленовый из любой серии К78-хх, здесь главное не составлять этот конденсатор из нескольких. Батарейка в катоде первой лампы это никель-кадмиевый аккумулятор стандартного размера ААА, на 300mAh, обязательно использовать нероссийского производителя, хотя бы тайваньскую GP. Дроссель L1 любой на ток более 20 mA и индуктивность 2...10 Гн, например от советских ламповых телевизоров. С деталями разобрались, осталось собрать конструкцию.
Для этого возьмем любую деревянную доску из родной русской древесины размером около 15-ти на 20 см и толщиной около10..18 мм, и проделаем в ней три отверстия для ламповых панелек. Одно отверстие проделываем на оси симметрии по длинной стороне под первую лампу 6Н9С, в которой физически находятся два одинаковых (почти) триода, они у нас будут работать каждый на свой, правый или левый канал. Панелька этой лампы должна быть закреплена в деревянном основании через прокладку из вязкой резины толщиной около 10 мм, это необходимо чтобы развязать лампу от механических вибраций основания. Также нужно акустически развязать и колбу лампы от механических колебаний, передающихся через воздух. Это можно сделать, прикрыв колбу лампы стаканом с толщиной стенок около 5 мм, склеенным из нескольких слоев неплотного картона клеем типа Феникс. Этот стакан прикрепляется тем же клеем к той самой прокладке из резины, которая развязывает лампу от колебаний шасси. Виброзащита для этого типа ламп обязательна. Два других отверстия для ламп 6Н8С делаем на расстоянии 7…8 см от первой лампы по длинной оси основания, на одинаковом расстоянии с каждой его стороны симметрично друг другу, поскольку триоды каждой из этих ламп работают на свой звуковой канал. Панельки этих ламп крепятся непосредственно к деревянному основанию.
Далее, перед лампой 6Н9С, симметрично длинной оси основания, делаем отверстия соответствующего диаметра и закрепляем, каждый со стороны соответствующего стереоканала, два стандартных панельных разъема RCA, желательно качественных, например фирмы NEUTRIK, которые легко можно найти в продаже. Эта пара разъемов будет входом корректора. Такие же разъемы нужно закрепить рядом с соответствующими канальными лампами 6Н8С, с противоположной стороны от расположения лампы 6Н9С. Это будут выходные разъемы корректора. Далее понадобится медная пластина толщиной от 0.5 до 1 мм и размерами 15 х 10 см. Из нее, вдоль одной длинной стороны, вырезаем полоски, которые будут служить опорными контактными площадками для распайки на них деталей (лепестки, терминалы), размером 10 х 25 мм, с обоих сторон которых делаем отверстия диаметром 2…3 мм. Одно из этих отверстий предназначено для крепления лепестка к деревянному основанию посредством обычного шурупа соответствующего размера. После того, как эти опорные площадки будут закреплены в выбранных вами местах деревянного основания согласно принципиальной схемы, вы можете изогнуть их любым образом, чтобы было удобно крепить на них выводы соответствующих этим площадкам деталей. На рисунке все эти контактные площадки обозначены розовым цветом. Другие выводы деталей закрепляются либо на выводах (лепестках) ламповых панелек, которые на схеме отмечены черным цветом, либо на общей для обоих каналов земляной шине, вырезанной из той же медной пластины особым образом. Лишь выводы конденсаторов С7 и резисторов R10 каждого канала крепятся непосредственно к сигнальному контакту соответствующего выходного разъема RCA. Если вам не хватит длины выводов деталей для соединения их согласно схемы корректора, то в качестве проводников нужно будет использовать вырезанные из медной пластины полоски шириной в два-три миллиметра, заизолировав последние, если потребуется, трубочками из хлопковой ткани или обычной бумаги. Общая для обоих каналов земляная шина представляет вырезанную из той же медной пластины под вашу конкретную конструкцию и ваши конкретные детали фигурную пластину, начинающуюся от земляных контактов входных разъемов RCA, далее проходящую над тыльной стороной общей для обоих каналов панелькой первой лампы 6Н9С и огибающую эту панельку, далее снова спускающуюся до деревянного основания и проходящую между панельками вторых ламп 6Н8С каждого стерео канала и заканчивающуюся на срезе земляных контактов выходных разъемов RCA, причем сама эта фигурная пластина земляной шины своей большей площадью располагается перпендикулярно к деревянному основанию. Минимальная ширина фигурной пластины около 10 мм. Со стороны деревянного основания у земляной шины должны быть предусмотрены (вырезаны и отогнуты на 90 градусов) лепестки для крепления, с помощью тех же шурупов, фигурной пластины земляной шины к деревянному основанию минимум в трех точках – около входных разъемов, после огибания фигурной пластиной панельки первой лампы и между панельками ламп 6Н8С каждого канала. Земляная шина на рисунке обозначена сине-красной линией проводников, причем оранжевые площадки на концах этой линии означают общие (физически) точки крепления деталей, чьи выводы на принципиальной схеме присоединяются к общей шине на оранжевых площадках. После того, как вы разберетесь со схемой и поймете как её организовать в «железе», остается главное – заставить себя собрать конструкцию, при этом подавив в себе совковый позыв к рационализаторству. И приобщение к виниловому сообществу вам гарантировано!

Некоторые частности

  1. Корректор задуман и рассчитан так, что НЕ ТРЕБУЕТ НИКАКОЙ НАСТРОЙКИ! Вам нужно только правильно, как показано на схеме и рассказано в описании, собрать его. Специально повторяю еще раз - обязательно подавив в себе всякие позывы к рационализаторству. Например, к шунтированию электролитов мелкими пленочными конденсаторами, потому что этот корректор не электродвигатель.
  2. Звук раскрывается после трехдневного прогрева.
  3. Корректор должен располагаться вблизи проигрывателя грампластинок.
  4. Источник питания представляет отдельную, достаточно удаленную от корректора (под метр где-то), конструкцию.
  5. В качестве высоковольтного источника питания желательно использовать трансформаторный кенотронный выпрямитель с фильтром С-L-C на выходе. Максимальный потребляемый ток по высокому напряжению не более 16…18 mA для обоих каналов корректора, т.е. вполне можно использовать в качестве выпрямителя лампы 6Ц5С или её пальчиковый эквивалент.
  6. В качестве накального питания ламп желательно использовать постоянное напряжение 6.3 Вольта, стабилизированное любым подходящим интегральным стабилизатором с рабочим током больше 2А, например из серии LM: 138, 150, 338, 350, которые широко распространены и очень дешевы. Ток, стабильно отдаваемый накальной обмоткой трансформатора, также должен быть не менее 2А.
  7. Дальнейшее художественное оформление конструкции корректора зависит от ваших личных предпочтений.
  8. В дальнейшем предполагается в этой серии выложить описание сборки качественного и простого усилителя на лампах с настоящим ламповым звуком. Т.е такого усилителя, который обладает прозрачным, чистым, с большой и устойчивой пространственной сценой, и, при всем этом, одновременно еще и смачным звучанием. Ну и общее питание для получившейся вместе с корректором усилительной системы. Единственная проблема вот только есть, она, как обычно, в отсутствии доступных по цене и одновременно качественных выходных трансформаторах. Так что на трансформаторы для этого усилителя объявляется конкурс.
  9. Ну и конечно же, любая ламповая техника представляет собой устройства с повышенной опасностью поражения электрическим током, поэтому очень прошу, не суйте пальцы во включенную конструкцию, прежде чем это сделать, обязательно убедитесь, что схема обесточена и электролитические конденсаторы успели разрядиться.

Это мое третье приближение к оптимальной конфигурации корректора на 600-ом LCR модулях. В этот раз я решил протестировать классический вариант, с согласованием импедансов при помощи межкаскадных трансформаторов. Итак, вот схема одного из двух опробованных мной вариантов:

Как видите – четыре каскада, два межкаскадных (один из них выполняет роль выходного) трансформатора, два межкаскадных конденсатора. Полное игнорирование идеи “короткого тракта”, а с учетом того, что корректор подключен к предусилителю – циничное игнорирование. 🙂 Тем удивительнее то, что на сегодняшний день – этот корректор (в моей системе) – наиболее прозрачный, динамичный и “стабильный” по звучанию из всех, что я слышал. Я был очень озадачен таким звуковым результатом – поскольку он в общем-то противоречит техническому здравому смыслу . По всей видимости, даже с учетом вдвое большего (чем это обычно требуется) количества каскадов усиления – тот положительный вклад, который приносит в звук низкоимпедансная LCR коррекция – существенно “перевешивает ” те (ранее незаметные!!!) звуковые артефакты связанные с применением классических высокоимпедансных RC цепей.

По схеме .

Первый каскад собран на двойном триоде 7F7 (можно применить 6113, 6SL7, 5751,12AХ7 и т.п.) и имеет коэффициент усиления =~30, второй каскад собран на тетроде 7С5 (можно применить 6V6GT, 6F6GT) в триодном включении, его коэффициент усиления =~1.8, LCR модуль ослабляет сигнал еще примерно на ~14 dB, таким образом при входном напряжении ~5mV (RMS)@1000Hz на выходе LCR модуля получаем ~55 mV. Далее сигнал усиливается третьим каскадом (коэффициент усиления =~12) и через межкаскадный конденсатор и регулятор уровня подается на четвертый каскад – с трансформаторной нагрузкой. В зависимости от того, какой требуется максимальный уровень выходного сигнала и насколько низкое требуется выходное сопротивление – выходной трансформатор может быть скоммутирован с коэффициентом передачи 1:1 или 1:0.5, коэффициент усиления каскада при этом будет 8 или 4, а выходное напряжение при этом будет ~ 5.4 или 2.7V (RMS), выходное сопротивление корректора во втором случае составит ~ 1 кОм. На практике, если выходного напряжения в пределах ~ 1…2V (RMS) – достаточно, то выходной трансформатор может быть такой, же как во втором каскаде и выходное сопротивление корректора в этом случае составит ~ 600 Ом. Более того, если применить транформаторы с приведенным сопротивлением первичной обмотки ~ 20K – например Hashimoto HL-20K-6 или Silk L-941S, то в качестве лампы второго каскада вполне можно применить “классический” двойной триод с Ri ~ 7K (VT231, 6SN7, 7N7,12AU7 и т.п.). Это позволит несколько уменьшить габариты конструкции и облегчить требования к блоку питания. На мой взгляд – это очень перспективный вариант корректора – схема остается примерно такая же, только лампы другие. 🙂

Блок питания выполнен по классической (для моих конструкций) схеме, анодное и накальное напряжения стабилизированы. В принципе, если применять высококачественные трансформаторы питания Hashimoto – то при тщательно продуманном монтаже вполне возможно питание накала напряжением переменного тока, а анодное напряжение можно не стабилизировать, применив RCLC фильтры.

Конструкция собрана на стандартном “классическом” шасси Hammond, состоящем из деревянной рамки и двух алюминиевых (верхней и нижней) панелей. Не могу сказать, что это оптимальный вариант шасси для корректора, тем не менее – уровень шумов, наводок и помех на выходе – очень низкий. Вероятно, напряжение источника питания стабильно и хорошо отфильтровано, а монтаж выполнен более-менее оптимально. 🙂

Корректор обладает выдающейся устойчивостью к перегрузкам, к “щелчкам” и инфранизкочастотным помехам – межкаскадные трансформаторы в этом помогают очень хорошо. На мой взгляд, хоть себестоимость конструкции довольно высока, но – разумно обоснована, поскольку соотношение “цена/качество – очень хорошее. В этом конкретном случае – применение дорогостоящих высококачественных трансформаторов и LCR модулей дает очевидный, слышимый и эффектный звуковой результат.

Несколько Фото.

Май 2018г. г.Владивосток

На прошлой неделе ко мне на “осмотр” попал таки весьма своеобразный корректор. Конструкция от известного подмосковного мастера была приобретена счастливым владельцем несколько лет назад и за все это время из нее так и не удалось “извлечь” сколь-нибудь интересного звука. Система, в которую был инсталлирован этот корректор – вполне хороша – акустика Audio Note, однотактный усилитель на 45-х (или 2A3) триодах, стол Nottingham c прекрасным набором тонармов и картриджей. Тем не менее – система не “звучала”, звук был плоский, зажатый и обогащен сибилянтами. При этом с CD – проигрывателя звук был существенно лучше, чем с винила – что, конечно – на мой взгляд уже весьма странно и подозрительно. 🙂 В ситуации обязательно нужно было разобраться.

Итак, вот эта конструкция – несколько фото —

С первого взгляда на печатную плату мне стало как-то свосем нехорошо и причиной этого был вовсе не печатный монтаж. 🙂 А после того, как я срисовал схему – мне стало совсем плохо. НЕ ОЖИДАЛ .

Схема —

Итак, в основу конструкции положен известный классический корректор Marantz-7 построенный по принципу активной коррекции, то есть как усилитель с большим коэффициентом усиления, охваченный глубокой петлей частотнозависимой общей ООС. В случае с Marantz такое схемотехническое решение было вполне оправданно – во первых, тогда так было “модно”, во – вторых глубокая ООС позволяет получить и стабилизировать заданные характеристики коректора даже при разбросе лараметров ламп а так же при их старении, что очень немаловажно для серийно выпускаемого изделия. На “вредоносное” воздействие ООС на звук во времена разработки Marantz-7 никто внимания не обращал. 🙂

Но “подмосковный” вариант был более чем оригинален – исходный усилитель с большим коэффициентом усиления остался практически без изменений, а RC цепи коррекции сделаны пассивными и включены на выходе усилителя, перед выходным каскадом – катодным повторителем. Первый вопрос, который у меня возник практически сразу же – а как же перегрузочная способность ? К сожалению, измерения подтвердили мои самые худшие ожидания.

Форма и уровень сигналов на выходах корректора, входной сигнал 5mV@1000Hz. Пока все выглядит вполне пристойно.

А вот осциллограммы сигналов в различных точках схемы при различных уровнях входного напряжения. Подробности читайте в комментариях к фото.

Анод лампы первого каскада (Желтый), Выход корректора (Синий), напряжение на входе 5 mV@1000Hz

Анод лампы первого каскада (Синий), Анод лампы второго каскада (Желтый), напряжение на входе 15 mV@1000Hz Заметна перегрузка второго каскада по ВХОДУ

Анод лампы первого каскада (Синий), Анод лампы второго каскада (Желтый), напряжение на входе 20 mV@1000Hz Перегрузка второго каскада по ВХОДУ вполне очевидна

Анод лампы Второго каскада (Желтый), Выход корректора (Синий), напряжение на входе 5 mV@1000Hz

Анод лампы Второго каскада (Желтый), Выход корректора (Синий), напряжение на входе 10 mV@1000Hz

Анод лампы Второго каскада (Желтый), Выход корректора (Синий), напряжение на входе 15 mV@1000Hz, перегрузка второго каскада ПО ВХОДУ, корректирующая цепь немного сдвигает фазу и сглаживает форму сигнала НА ВЫХОДЕ.

Результаты измерений вполне очевидны – вся конструкция в целом и второй каскад в частности начинает перегружаться уже при напряжении на входе корректора = 15mV, что совершенно недостаточно.

Исходя из усредненных справочных данных наиболее распространенных моделей ММ звукоснимателей, номинальным уровнем входного сигнала для проведения измерений и снятия характеристик можно считать напряжение 5mV @1000Hz. При этом – если предположить, что уровень ВЧ на грампластинке записан по 0dB, то на частоте 20 kHz номинальный уровень входного сигнала будет ~ 50mV, то есть корректор должен обеспечивать запас перегрузочной способности по входу не менее +20dB.

По данным исследования Shure абсолютный максимум музыкального сигнала, когда-либо записанного на долгоиграющей пластинке, составляет 38 см/c на частоте 2 kHz; на низких и высоких частотах рекордные уровни спадают до 26 см/c на 400 Hz и 10 см/c на 20 kHz. Помимо этого, например в известной статье — Douglas Self. Design of moving-coil head amplifiers // Electronics & Wireless World 1987 №12 — рассуждения автора приводят к выводу, что максимальный среднеквадратичный уровень входного напряжения сигнала, на который нужно ориентироваться при конструировании винил корректора, должен быть равен не менее 64 mV (40 см/c при чувствительности 8 mV@1000Hz)

Таким образом, корректор не обладает сколь-нибудь значительным запасом по перегрузочной способности что, собственно и проявляется в его характерном звучании – зажатом,ограниченном и тусклом. Помимо принципиально неверного схемотехнического решения в схеме остался ряд “атавизмов” от Marantz – незашунтированный резистор в катоде лампы первого каскада (в оригинальной схеме на него заводилась петля ООС) и несколько странно выбранный номинал сеточного резистора первого каскада, который определяет входное сопротивление корректора. Вместо общепринятого стандарта в 47 кОм по какой-то причине был установлен резистор в 100 кОм. Номиналы цепей корреции так же вызывают некоторые вопросы, так как измерения выявили несоответвие (до +- 2 dB) АЧХ корректора кривой RIAA как в области низких (20….100 Hz), так и в области высоких (10….20 kHz) частот.

Блок питания корректора построен по линейно-стандартной схеме – выпрямитель со средней точкой, многозвенный RCRCRCRC фильтр питания. Накалы ламп питаются выпрямленным и стабилизированным напряжением постоянного тока.

Схема Блока Питания —

Ну, что-же – это значит, что конструкция явно нуждается в доработке и, к счастью – если доработать блок питания, перекоммутировать несколько дорожек на печатной плате корректора и поменять местами несколько резисторов – можно получить принципиально лучший результат даже без существенного изменения номиналов деталей. *** обозначения B1 и B2 нужно поменять местами ***

Вот новая, улучшенная схема корректора —

Как видно, я собрал вполне “классический” вариант лампового корректора на триодах с сосредоточенной пассивной коррецией, включенной между первым и вторым каскадами. В качестве выходного каскада – “буфера” применен катодный повторитель. Я более точно пересчитал номиналы цепей коррекции, применил в цепях коррекции и на выходе конденсаторы другого типа, а так же уменьшил номинал выходного конденсатора. С учетом того, что как правило входное сопротивление усилителя мощности составляет около 50 кОм, емкость выходного конденсатора вполне разумно ограничить номиналом 2.7….4.7uF. Помимо уменьшения переходных процессов при включении, выбор сравнительно небольшой емкости позволяет ограничить уровень инфранизкочастотных помех, проникающих на вход усилителя мощности.

Блок питания —

В блоке питания я изменил номиналы нескольких фильтрующих резисторов, что позволило более эффективно распределить напряжение питания между каскадами. Для того, чтобы снизить вероятность пробоя между накалом и катодом лампы выходного каскада я добавил цепь “подъема” потенциала цепи накала над общим.

Несколько фото и осциллограммы сигналов —

Как видно из результатов измерений – перегрузочная способность корректора существенно (в 10 раз) 🙂 улучшилась (см. последнее фото – 150mV на входе вместо исходных 15 mV), что больше рекомендованной Douglas Self примерно в 2,5 раза 🙂 Это значит, что звучать такой корректор будет чисто, свободно, открыто, динамично, объемно и воздушно. Уровень искажений – очень низкий, устойчивость к “щелчкам” – черезвычайно высока. Отклонение АЧХ от кривой RIAA в области НЧ – не более 0.3dB, в области ВЧ (12…20 kHz) не более 0.7 dB.

На сегодняшний день конструкция была прослушана в трех весьма качественных сетапах и показала себя очень достойно. Конечно, до LCR корректора по звуку она явно не “дотягивает”, но среди обычных-классических RC корректоров на триодах эту конструкцию вполне заслуженно можно считать одной из оптимально-лучших.

Январь 2018 г. г.Владивосток.

Posted in , |

Как – то на одном из форумов промелькнула тема – “Правильному усилителю – правильную акустику”. А я скажу вот что – “Правильному усилителю – правильный предусилитель”.

Чем же ваш предусилитель так “правилен?” – спросите вы меня. И будете по-своему правы. 🙂

Функционально предусилитель состоит из трех блоков – блок питания, блок RIAA корректора и, собственно – каскада предусилителя с регуляторами уровня и коммутатором входов. Для уменьшения наводок и для большего удобства расположения в стойке с аудиооборудованием блок питания выполнен в отдельном корпусе.

Схема блока питания – вполне традиционна для моих конструкций и каких-либо особенностей не имеет. Все питания – стабилизированы, выпрямитель – на полупроводниковых диодах – в качестве регулирующего элемента применен биполярный транзистор. Напряжение для питания накала – выпрямленное и стабилизированное.

Блок предусилителя – схемотехнически эквивалентен усилителю “Zen Guru” и на сегодняшний день я считаю такое решение лучшим для предусилительного каскада. В этом варианте предусмотрены только RCA входы и выходы, без развязывающего балансного трансформатора на входе. Выходные трансформаторы – Hashimoto, лампы – Zenith 6J5GT 50-х годов. Регулятор уровня – Gold Point, на базе переключателей ЕLMA и резисторов KOA Speer – на мой взгляд – это оптимально лучшее решение как по надежности, так и по звуковым характеристикам.

Несколько слов о RIAA корректоре. В ходе обсуждения конструкции было решено, что корректор, во-первых должен вносить по-возможности минимальный окрас в общий звуковой почерк, обладать отличной разрешающей способностью, ясностью во всей полосе частот и стабильные звуковые характеристики – “сцена” не должна “плавать” в зависимости от спектрального состава и громкости воспроизведения. Думаю, что в меру своих сил и в рамках выделенного бюджета 🙂 я вполне справился с поставленной задачей. Корректор побывал на нескольких прослушиваниях в аудиосистемах очень высокго класса и всегда отмечались как исключительно четкая проработка тонкостей ритмической составляющей музыки, так и четкость, стабильность сцены, эшелонирование музыкальных инструментов и голосов исполнителей. Пожалуй, что для записей “старого” джаза “эшелонирование” даже слишком хорошее, например вполне очевидно слышно, что соло на ударных в “Take Five” Dave Brubeck (примерно 3-я минута) на записи “приближено” звукооператором, а в “Our Love Is Here To Stay” слышно, что Ella и Louis располагались в студии на некотором расстоянии…

По схеме:

Два каскада на лампах 6AC7 в триодном включении. В качества анодной нагрузки я применил интегральные источники тока, такое решение позволило получить максимальное усиление при очень низком уровне гармонических искажений, который растет очень незначительно при увеличении амплитуды выходного сигнала до начала его ограничения. Первый каскад – с источником тока в качестве анодной нагрузки, второй каскад – так называемый “гибридный” SRPP. В частности, приведенный на схеме каскад имеет коэффициент усиления 42, выходное сопротивление ~ 800 Ом, максимальный размах выходного напряжения на нагрузке 10 кОм ~ 36V rms, при этом коэффициент гармоник составляет не более 0.3%. Цепь коррекции включена между каскадами, в качестве элементов коррекции я применил рулонные полистирольные конденсаторы и carbon film резисторы, межкаскадный конденсатор – металлобумажный, выходной – составной из включенных параллельно пленочного MKP и металлобумажного конденсаторов. Естественно, лампы для корректора пришлось тщательно отбирать как по микрофонному эффекту, так и по требуемому усилению и искажением. У меня получилось подобрать две подходящие пары примерно из 30 шт. Конструктивно сокеты ламп первого каскада размещены на монтажных панелях с виброразвязкой, остальные сокеты – на верхней стороне шасси. В этой конструкции я отошел от типичной монтажной схемы корректоров “общая шина от входа до выхода”. Для минимизации наводок оказалость более правильным не объединять общий с корпусом на клемме заземления возле входных разъемов, а протянуть от клеммы отдельный провод и соединить общий с корпусом возле первого каскада.

В целом – построение корректора по схеме двух последовательных каскадов, нагруженных на источники тока – мне кажется перспективной в смысле “звука” идеей которую, на мой взгляд – например точно имеет смысл опробовать на “наших” лампах 6С45П, отзывы о звуковых характеристиках которых весьма противоречивы. Мне кажется, что в этом случае 6С45П могут раскрыться с очень неожиданной стороны.

PS (2019 год) За прошедшие два года Корректор был повторен несколько раз и обрел свое имя – “CODA!” (Ко́да), так же как название замечательного винила Led Zeppelin. “… Ко́да в музыке - дополнительный раздел в конце музыкального произведения. Содержание коды может явиться «послесловием», выводом, развязкой и обобщением тем, развитых в разработке…”

Октябрь 2017г. г.Владивосток

Posted in , |

В поисках интересных схемотехнических решений RIAA фонокорректоров на форумах я часто встречал вопросы вроде “…а вот неужели никто не пробовал коррекцию на LCR модулях и, если пробовал – в чем отличие в звучании?”. Признаться, до недавнего времени я тоже “полноценно” не пробовал такой тип коррекции, предполагая, что и традиционный RC вариант более, чем достаточен. Тем не менее, где-то с год назад мне в процессе сложного и многоступенчатого обмена комплектующими 🙂 по случаю досталась пара LCR RIAA 600 Ом модулей от компании Silk Audio. Примерно тогда же я отслушал их на макете, отметив ровное и плотное звучание – но при слишком высокой чувствительности к наводкам. На этом испытания закончились и модули отправились в “тумбочку” до лучших времен. Лучшие времена наступили летом этого года, после того, как я испытал на своей вертушке различные винтажные картриджи и одноопорный тонарм Opera Consonance T1288. Поскольку с картриджами и тонармами мне все более-менее ясно, я решил таки подразобраться с дальнейшим исследованием типов коррекции и довести макет с LCR модулями до готового результата.

1. В чем смысл применения LCR коррекции?

Во-первых, это готовый корректирующий модуль со строго нормированной АЧХ. Во-вторых, поскольку входной импеданс LCR модуля = 600 Ом, схемотехнически возможно построить корректор без емкостной связи между каскадами, используя “стандарные” 600-ом трансформаторы, широко применявшиеся ранее в студийной аппаратуре. При этом токи сигнала, проходящие через цепи коррекции имеют существенно большие амплитуды по сравнению с традиционными RC цепями. В третьих, сопротивление LCR модуля постоянному току мало и выходной импеданс = 600 Ом, что позволяет для дальнейшего усиления сигнала применить каскад со сравнительно низким входным сопротивлением, что, в свою очередь – существенно снижает уровень наводок на его входе. Тем не менее, на практике это не избавляет от необходимости тщательного экранирования модуля. В четвертых, уважаемые мной специалисты утверждают, что LCR, LR и особенно Rx корректоры звучат “достовернее, четче, яснее и музыкальнее”, чем RC. Я тоже должен был это услышать 🙂

2.Трудности с первым каскадом.

По всей видимости, модули от Silk Audio собраны по такой схеме:

Конденсаторы, согласно данным Silk Audio, рассчитаны на рабочее напряжение не более 100V DC. Как один из возможных вариантов, “классически-винтажная” схема корректора могла бы выглядеть например так:

Я бы, конечно, мог применить другие лампы, гальваническую связь между каскадами, выпрямитель на пп диодах, стабилизатор-фильтр на транзисторе и т.п. – но и в этом случае устройство получилось бы (на мой взгляд ) черезмерно большим и тяжелым.

Основная проблема заключается в первом каскаде и его согласовании с низким сопротивлением нагрузки. Во-первых, он должен усиливать сигнал не менее, чем в 30…50 раз, во-вторых, его выходное сопротивление должно быть ниже 600 Ом и в третьих – постоянный потенциал на его выходе не должен превышать 100 Вольт. То есть – если рассматривать простой каскад с резистором в качестве анодной нагрузки – нужна лампа с внутренним сопротивлением не более 600 Ом, u = 50….70, с приличным раскрывом характеристик и хорошей линейностью в рабочей точке с +70…+90V на аноде и -1…-2В – на сетке. Я, например, таких ламп не знаю. 🙂 Если же рассматривать “составной ” каскад, то в принципе SRPP на 6С45П-ЕВ вполне может подойти, следует лишь проверить ток сетки в выбранном режиме. Помимо ламп, я так же рассматривал варианты входного каскада на малошумящих полевых транзисторах. Что-нибудь вроде таких конфигураций вполне может сработать, хотя, конечно транзисторы – это не наш метод:

3. Макетирование и итоговая схема.

В процессе макетирования я решил попробовать так называемый “гибридный SRPP”:

4. Схема корректора:

На всякий случай, для большей ясности – привожу приблизительный расчет по перегрузочной способности первого каскада.

Напряжение на выходе “типичного” ММ картриджа на частоте 1000Hz при линейной скорости записи 5cm/sec составляет ~ 5mV. Максимальная линейная скорость записи на LP диск ограничена шириной звуковой дорожки и не может быть больше ~ 12cm/sec, напряжение на входе корректора при этом составит = 12mV. Пусть первый каскад имеет коэффициент усиления = 50, тогда напряжение на его выходе будет ~ 0.6V. Исходя из выбраного режима, максимальное выходное напряжение на нагрузке 600 Ом = 6…7V, что, в общем-то обеспечивает хороший запас по перегрузочной способности. Тем не менее, стоит отметить, что если в вашей коллекции много EP дисков на “45”, макcимальная линейная скорость записи которых может составлять до 33cm/sec, то входной каскад корректора желательно немного доработать. В частности – вариант на полевых транзисторах с напряжением смещения 200mV и напряжением источника питания меньше 40V в этом случае выглядит совсем не привлекательно.

Итак – Первый каскад – 6AC7 (6Ж4) в триодном включении, рабочая точка 90V@15mA смещение = – 0.7…1V. В качестве анодной нагрузки применен интегральный источник тока IXYS IXCP10M45S, сигнал снимается с его катода. В такой конфигурации каскад имеет коэффициент усиления ~ 40…50, выходное сопротивление ~ 50Ом, при максимальном токе нагрузки около 10…12mA, что на нагрузке 600 Ом позволяет получить амплитуду сигнала до ~ 6…7V.

Второй каскад особенностей не имеет, в качестве нагрузки применен 1:1 трансформатор с Ra = 5K. Вполне возможно построить второй каскад по такой же схеме, как и первый.

Блок питания – типичный для моих конструкций – анодное напряжение – стабилизированное, стабилизатор – простой параметрический на полевом транзисторе. Накал питается выпрямленным и стабилизированным напряжением постоянного тока.

Основные характеристики:

  • Входное сопротивление = 47 кОм (может быть изменено установкой дополнительных резисторов)
  • Выходное сопротивление =< 2 кОм (в варианте коммутации выходного трансфоматора 1:1)
  • Номинальное выходное напряжение ~ 1V RMS
  • Максимальное выходное напряжение на нагрузке 10 кОм = 60V RMS
  • Коэффициент усиления ~ 180
  • <150uV (“взвешено” по кривой “A”)
  • <= 0.2%, в основном 2-я и 3-я гармоники. Уровень третьей гармоники относительно уровня второй <= -20 dB.

Несколько фото –

Обратите внимание на “поставленный в угол” предусилитель Nagra PL-P.

Корректор собран в одном корпусе с предусилителем, который по совместительству является и упоминавшимся ранее усилителем для высокоомных наушников – Zen Guru . Схему опубликую чуть позже .

Август 2016г. г.Владивосток

P.S. О звуке . В этом же корпусе на этом же месте до LCR корректора находился RC корректор на 6SF5 + 6AС7. Блок питания и внутренняя разводка остались практически те же, что и до переделки.

Поэтому я считаю, что характерные различия в подаче “звука” от смены типа коррекции я уловил в полной мере. Во-первых, это область НЧ – с LCR они более полновесны, разрешающая способность выше, переход от НЧ к СЧ – стал как бы “более гладкий и ясный” 🙂 Во вторых – это более стабильная “сцена” при изменении громкости и несколько лучшая объемность, наполненность звучания. В-третьих, переход от СЧ к ВЧ так же стал “более гладкий и ясный”. Можно сказать, что звучание с LCR – при сохранении музыкальности и пластичности позволило более явно услышать некие ускользавшие ранее тончайшие особенности записи. В общем и целом – применение LCR модулей в коррекции – вполне оправданно 🙂 и я пожалуй, продолжу опыты с ними.

Posted in , |

Начинающие “виниловоды” часто спрашивают меня о простой в сборке и не требующей особой наладки схеме корректора, на недорогих и доступных лампах советского производства. Что же – такая схема у меня есть 🙂

Комментарии к схеме корректора.

На мой взгляд – это наиболее оптимальная и качественная схема на лампах 6Н2П-ЕВ, 12AХ7. Первый каскад – лампы одного баллона соединены параллельно, это снижает внутреннее сопротивление, что, в свою очередь – понижает шумы и уменьшает выходное сопротивление каскада. Таким образом, цепи коррекции меньше нагружают первый каскад и потери сигнала на них получаются меньше. Второй каскад – с катодным повторителем на выходе, что обеспечивает низкое выходное сопротивление и дает возможность работать на длинный кабель и сопротивление нагрузки от 10 кОм.
По конденсаторам в корректирующей цепи – высокого напряжения на них нет, поэтому можно применить качественные фольговые низковольтные полистирольные конденсаторы. Межкаскадный и выходной конденсаторы должны быть на рабочее напряжение не менее Ua. Катодные
конденсаторы – Panasonic серии FK, FC. Панельки ламп лучше применить
со “стаканами”. Напряжение источника питания может быть в пределах +220…+300V (может быть и выше, но потребуется коррекция номиналов резисторов R9, R10). Наладка схемы сводится к контролю режимов работы ламп и подбору ламп по одинаковому итоговому усилению левого и правого каналов. Напряжение на анодах ламп первого и второго каскадов – в зависимости от напряжения источника питания должно быть в пределах 100…150 Вольт. Рекомендую запастись достаточным количеством ламп, 10 шт 6Н2П-ЕВ – это минимум для подбора идентичного комплекта. И еще – лампы 6Н2П обязательно должны быть с индексом ЕВ . Обычные “простые” 6Н2П – не подойдут, не тратьте на них свое время.

Блок Питания.

Поскольку начинающие виниловоды применяют трансформаторы не “такие как надо”, а “такие, какие есть в наличии” 🙂 – то для исключения различных трудноустранимых “неожиданностей” я рекомендую выполнить блок питания в отдельном корпусе. Схема вполне стандартная – выпрямитель, фильтр на полевом транзисторе. Если вторичная обмотка имеющегося в наличии трансформатора – одна без отвода от середины и на напряжение 200…250V, то можно применить мостовой выпрямитель.
Транзистор фильтра и стабилизатор – на радиаторах, можно закрепить на
металлический корпус через изолирующие прокладки. Транзистор фильтра практически не нагревается, а стабилизатор напряжения накала будет
довольно горячим.

Хорошего Звука!

Январь 2015г. г.Владивосток

Posted in , |

На днях попал ко мне на “медосмотр” 🙂 довольно интересный предусилитель от YBA – модель 2 “Аlpha”. Уровень сигнала при подключении проигрывателя на вход “Phono” был мал и наблюдался некоторый разбаланс уровня по каналам. Но это не самое важное . 🙂 Интересно то, как в этой конструкции решена “проблема” (***а вообще, насколько она существенна для транзисторов? ) уменьшения влияния внешних вибраций на сигнал. У меня просто нет слов, только фотографии.

Схема усилителя смонтирована с обратной стороны платы, поверхностным монтажем. Почти классическая транзисторная схемотехника, ничего интересного.

Октябрь 2014 год г.Владивосток

Posted in , |

В один из долгих зимних вечеров, разгребая “закрома” я вдруг нашел замечательную парочку ламп —

И так уж случилось, что в это же время мой очень хороший знакомый Владимир попросил изготовить для него винил коректор. Это точно судьба 🙂

Разработка и расчет схемы заняли несколько дней. Основные условия эксплуатации были следующие – картридж MM или MI, сравнительно короткие соединительные провода, входное сопротивление усилителя мощности (тоже, кстати, моего производства) = 20 кОм, чувствительность 300 mV. Я решил применить классическое решение – три каскада + пассивная сосредоточенная коррекция. Триоды лампы первого каскада соединены параллельно – это позволяет во-первых, уменьшить уровень шума и, во-вторых – уменьшить внутреннее сопротивление – что, в свою очередь, позволяет использовать в цепи коррекции резисторы номиналом не более 200…250 кОм. Не могу сказать, что я совсем не волновался о возрастании входной динамической емкости запараллеленного триода, но предварительный расчет и последующие измерения показали, что мои волнения были черезмерными. Расчет цепей коррекции был выполнен в экселевской таблице (см. раздел Литература ).

“Сквозная” АЧХ, снятая с обратным RIAA фильтром — (Обратите вимание на масштаб по оси “Y”)

Коротко о схеме.

Первый каскад- с общим катодом, коэффициент усиления = 48 , выходное сопротивление ~18 кОм. В цепи коррекции применены фольговые полистирольные конденсаторы и резисторы Dale с точностью 1%. Межкаскадный конденсатор – “наш” K40-У9, так же вполне подойдет и Jensen PIO. Ослабление сигнала в цепи коррекции составляет примерно -18dB. Выходной каскад – составной, с гальванической связъю, по схеме каскад с общим катодом + катодный повторитель. Коэффициент усиления второго каскада = 16, катодный повторитель обеспечивает необходимое согласование с межблочным кабелем и входом усилителя мощности. Известно некое “аудиофильское предубеждение” о применении катодных повторителей в звуковых схемах. На мой взгляд и слух – с повторителями все нормально, просто не нужно от них требовать невозможного, например линейной работы на нагрузку, превышающую расчетное выходное сопротивление всего в 10 раз. Превышайте в 20 раз – и с музыкой все будет в порядке 🙂

Блок питания выполнен в отдельном корпусе. Трансформатор – тороидальный, мощностью 50VA, закрыт толстым стальным кожухом. Выпрямитель анодного напряжения мостовой, на диодах FR157, напряжение фильтруется электронным фильтром на транзисторе VT1, он же обеспечивает его плавную подачу. Накалы ламп соответствующих каскадов соединены последовательно и питаются выпрямленным и стабилизированным напряжением постоянного тока. Поскольку максимальное допустимое напряжение между катодом и накалом у ламп 7N7 составляет 90 Вольт, накал “поднят над землей” примерно на 50 Вольт делителем R4R5.

Основные технические характеристики.

  • Выходное сопротивление =< 1 кОм
  • Номинальное выходное напряжение = 0.32V RMS
  • Номинальное входное напряжение = 4mV RMS.
  • Максимальное выходное напряжение на нагрузке 20 кОм ~ 35V RMS
  • Коэффициент усиления на частоте 1 кГц~ 80
  • Уровень собственного шума и помех на выходе при “закрытом” входе =<190uV (“взвешено” по кривой “A”)
  • Отклонение суммарной АЧХ от стандарта RIAA в диапазоне частот 20Гц…20кГц = не более 0.5dB.
  • Коэффициент гармоник на частоте 1 кГц на нагрузке 20 кОм при номинальном выходном напряжении <= 0.3%, в основном 2-я и 3-я гармоники. Уровень третьей гармоники относительно уровня второй <= -20 dB.

В комплекте с MI картриджем Grado Prestige Gold звучание корректора очень свободное, объемное, с отличным музыкальным разрешением и прекрасным тональным балансом. Справедливости ради нужно отметить, что коректор на пентодах С3g несколько более “быстр и динамичен”. Но для музыкальных жанров, которые предпочитает Владимир – это совершенно несущественно. 🙂

Несколько фото –

Май 2014 г.Владивосток

Дополнение от 15.09.2014 – в выходном каскаде так же применены лампы 7F7. В этом случае резисторы R10 и R11 = 100 кОм. Коэффициент усиления выходного каскада = 39…42, итоговый коэффициент усиления корректора увеличился до 190..193. Таким образом, при “стандартном” для большинства MM/MI картриджей выходном напряжении ~ 4mV (@1000Hz, 5 cm/sec) уровень сигнала на выходе корректора составляет ~ 0.77 V RMS (0 dbU). Выходное сопротивление при этом уровне выходного сигнала равно примерно 600 Ом. Минимальное сопротивление нагрузки на выходе корректора должно быть >= 10 кОм.

Posted in , |

Предусилитель-корректор на полевых транзисторах

Эта схема была сочинена мной в далеком 1988 году – для проигрывателя Aria -102. Помню, что первоначально я собрал вариант на микросхеме К157УД2, но при прямом сравнении конструкция на операционном усилителе показалась мне существенно беднее по звуку, чем на полевых транзисторах. Поэтому, после недавнего возрождения винила в моей коллекции – первый корректор, который я решил собрать – была та самая схема. Очень уж мне хотелось проверить ее звуковые свойства – действительно ли она была так хороша, как мне тогда казалось 🙂 Тем более, что, к моему удивлению – на просторах интернета я нашел набор для сборки корректора с примерно такой же схемой, как и “нарисованная” мной 25 лет назад. Набор был немедленно приобретен, номиналы цепей коррекции и режимы транзисторов пересчитаны заново. В итоге схема приобрела следующий вид —

“Сквозная” АЧХ, снятая с обратным RIAA фильтром – (Обратите внимание на масштаб по оси “Y”)

Корректор черезвычайно прост — в “базовом” варианте всего два каскада усиления, первый на малошумящем полевике 2SK170GR (Idss = 2.6…6.5 mA), второй просто на подходящем полевике 2SK246GR (Idss = 2.6…6.5 mA). Режим работы первого каскада: ток покоя = 1.5mA. напряжение смещения = -0.27V, коэффициент усиления = 125 (с шунтирующим конденсатором в цепи истока). Пассивная RC корректирующая цепочка включена между каскадами. С хорошей степенью точности выходное сопротивление первого каскада можно считать = R3, и номиналы элементов корректирующей цепи легко рассчитываются при помощи экселевской таблицы, приведенной в разделе Литература . Потери сигнала в корректирующей цепочке на частоте 1 kHz составляют примерно 20 dB. Режим работы второго каскада: ток покоя = 2mA, напряжение смещения = -0.47V, коэффициент усиления = 15, выходное сопротивление примерно 10 кОм. Для работы на длинный (более 1.5м) кабель схему выходного каскада желательно дополнить истоковым или эмиттерным повторителем на еще одном транзисторе. Таким образом, итоговое усиление схемы на частоте 1 кГц = 188, перегрузочная способность по входу составляет примерно 20dB на частоте 100Hz, номинальное выходное напряжение = 1V rms, максимальное выходное напряжение = 12V rms. В общем-то, весьма неплохие параметры для такой простой конструкции.

Блок питания собран по схеме умножения напряжения, это позволяет существенно снизить коммутационные помехи выпрямительных диодов, выпрямленное напряжение фильтруется фильтром на биполярном транзисторе T1.

Основные технические характеристики –

  • Входное сопротивление = 47 кОм (может быть уменьшено установкой дополнительных резисторов)
  • Выходное сопротивление =< 10 кОм (в “базовом” варианте)
  • Номинальное выходное напряжение = 1V RMS
  • Максимальное выходное напряжение на нагрузке 100 кОм = 12V RMS
  • Коэффициент усиления ~ 188
  • Уровень собственного шума и помех на выходе при “закрытом” входе =<190uV (“взвешено” по кривой “A”)
  • Отклонение суммарной АЧХ от стандарта RIAA в диапазоне частот 20Гц…20кГц = не более 0.8dB.
  • Коэффициент гармоник на частоте 1 кГц на нагрузке 100 кОм при номинальном выходном напряжении <= 0.3%, в основном 2-я и 3-я гармоники. Уровень третьей гармоники относительно уровня второй <= -15 dB.
  • Некоторое время тому назад моему хорошему другу, меломану и эзотерику Николаю попала в пользование виниловая вертушка Dual с весьма перспективным МС картриджем Audiotechnica AT-33EV. Естественно, срочно понадобился корректор и он обратился ко мне. 🙂 Требования были следующие – четкий, ясный и динамичный звук, без какого либо налета “винтажности”. Блок питания – без электролитических конденсаторов. Трансформаторный выходной каскад, сигнальные и выходные трансформаторы – Sowter. Один блок. Габариты не имеют значения. Ну что-же – не имеют, так не имеют 🙂 Так и возникла эта конструкция – в большом алюминиевом корпусе натурального цвета, размерами 45x25x35см. Der Frankenstein .

    Корректор двухкаскадный, с пассивной коррекцией, в первом и втором каскадах применены замечательные лампы С3g от Siemens. Требования к первому каскаду при такой конфигурации корректора довольно жесткие – он должен иметь сравнительно высокий коэффициент усиления при минимальном уровне шума, хорошую перегрузочную способность, стабильное выходное сопротивление и малую динамическую входную емкость. Исходя из этих требований вполне логично применить С3g в “родном” пентодном включении. Второй каскад должен иметь низкое выходное сопротивление и отличную перегрузочную способность при умеренном коэффициенте усиления. С3g в триодном включении – вариант, близкий к идеалу 🙂 Режим работы первого каскада – напряжение на аноде =+175…180V , напряжение на второй сетке =+110…115V , напряжение смещения =+1.5…1.7V . коэффициент усиления = 95…100. Должен отметить, что C3g в пентодном включении хорошо “звучит” в довольно широком диапазоне анодных нагрузок. Для согласования с картриджем применен специализированный повышающий МС трансформатор Sowter 1990 (1:10). В цепях коррекции применены низковольтные “рулонные” полистирольные конденсаторы, известные своими отличными звуковыми свойствами. Из-за их низкого рабочего напряжения корректирующая цепочка включена “традиционно”, между каскадами усиления. Потери сигнала в цепях коррекции составляют примерно 20dB. Режимы второго каскада – напряжение на аноде = + 155…160V, напряжение смещения = +2.6…2.8V , коэффициент усиления = 45…50 выходное сопротивление = 2.3К. Выходные трансформаторы Sowter 9525. С учетом коэффициента передачи входных трансформаторов итоговый коэффициент усиления корректора по входу МС около 5000, при воспроизведении дорожки “0 dB@1000Hz” тестового диска c картриджем AT-33EV напряжение на выходе корректора составляет 1.5V RMS. Вторичная обмотка выходного трансформатора имеет несколько отводов, что позволяет регулировать уровень выходного напряжения и, при необходимости, понизить выходное сопротивление корректора. В коррекции применены резисторы Takman серии REX, все остальные резисторы – Kiwame. Конденсаторы, шунтирующие катодные резисторы – Panasonic, межкаскадный конденсатор – Jensen (медная фольга бумага масло). Конденсаторы в цепях питания – ASC. (тефлон + масло). Монтаж выполнен серебряно-золотым проводом Siltech.

    Схема Блока питания корректора –

    Выпрямитель анодного напряжения собран по схеме со средней точкой, выпрямленное напряжение фильтруется электронным транзисторным фильтром, он же и обеспечивает плавное нарастание анодного напряжения при включении устройства. C фильтра питание подается на каждый из каналов корректора через дополнительные развязывающие эзотерические LC цепочки. Накал ламп питается от выпрямленного и стабилизированного напряжения 12.6V, нити накалов ламп каждого из каналов включены последовательно. Как я упоминал ранее, корректор и блок питания смонтированы в одном большом алюминиевом корпусе. Дно корпуса составлено из двух алюминиевых пластин, скрепленных между собой виброгасящим клеющим составом. Лампы и детали схемы смонтированы на отдельной толстой (12мм) алюминиевой пластине, прикрепленной к дну корпуса через четыре виброгасящие стойки.

    1. Корректор

    Для контроля АЧХ корректора удобно применить так называемую Анти-RIAA цепь, например такую, как в статье “On Reference RIAA Networks” by by Jim Hagerman . (см раздел ) Схема —

    Для снятия итоговой АЧХ цепь подключается меду генератором и тестируемым корректором. При применении конденсаторов с точностью номиналов 5% и резисторов 1%, при измерениях итоговой АЧХ обеспечивается соответствие стандарту RIAA с точностью 0.5dB – что более, чем достаточно. В качестве измерительного комплекса удобно использовать компьютер с профессионального качества звуковой картой и соответствующим набором соединительных кабелей. Для проведения измерений я рекомендую пользоваться программой True RTA (Level 4).

    Анти-RIAA цепь о чень удобно выполнить в виде отдельного модуля —

    2. Картридж + кабель + коректор

    После приведения к стандарту АЧХ корректора, желательно снять АЧХ системы “картридж + соединительный кабель + корректор” в области ВЧ, особенно это актуально для ММ картриджей и корректоров, входной каскад которых выполнен на триоде с большим коэффициентом усиления. Цель этих измерений – проверить отсутствие отклонений АЧХ в области ВЧ, вызванных совместным взаимодействием 🙂 индуктивности картриджа, емкости соединительного кабеля и входной емкости первого каскада корректора. Для этого используют простейшую схему —

    Отклонения АЧХ компенсируют подбором номинала нагрузочного резистора на входе корректора.Рекомендованный” большинством производителей номинал в 47…51К – только “отправная точка”. Корректор, первый каскад которого имеет небольшую входную емкость в комплекте с МС картриджем, нагруженным на согласующий трансформатор- будет иметь более ровную АЧХ в области ВЧ , по сравнению с большинством ММ и MI картриджей, подключенным на вход этого же корректора. Сочетание входного каскада на триоде с большим коэффициентом усиления, длинного соединительного кабеля и MM (MI) картриджа является наиболее проблемным в смысле “поведения” результирующей АЧХ на ВЧ.

    3. Стол + тонарм + картридж + кабель + корректор

    Следующий этап – это снятие итоговой АЧХ всей системы – проигрыватель + картридж + соединительный кабель + корректор. После проверки при помощи соответствующих шаблонов правильности установки тонарма, картриджа на тонарме и выставления оптимальной прижимной силы, на проигрыватель устанавливают измерительную пластинку. Подойдут, например, такие —

    До начала работы – на соответствующей дорожке, контролируя баланс каналов, необходимо проверить правильность установки картриджа в горизонтальной плоскости. Затем снимают АЧХ, особое внимание следует уделить области НЧ, какие-либо отклонения (постоянные или периодические) АЧХ в этой области могут быть следствием механического резонанса тонарма, проникновения на вход усилителя помех и фона от схем управления двигателем, неравномерности вращения или нарушения геометрии диска. Как правило, если механика проигрывателя исправна, картридж установлен точно и итоговая АЧХ системы “картридж + кабель + корректор” ранее была настроена верно, измерительная пластинка не покажет каких-либо существенных отклонений АЧХ. В этом случае ваш комплект можно считать более или менее настроенным.

    Если хотите, чтобы звучание вашей системы было всегда эталонным – проводите процедуру настройки при каждой замене картриджа 🙂

    Владивосток, 2013

    Posted in , |

Винил корректор — обязательная составляющая любого проигрывателя виниловых дисков. От его качества напрямую зависит качество воспроизведения. Рассмотрим сегодня зарекомендовавшие себя и многократно опробованные схемы, по которым можно собрать винил корректор.

Я уже рассказывал . Сегодня же рассмотрим пару схем винил корректора на ОУ. Обе схемы собирались и проверялись лично, и прекрасно работают уже более 5 лет.

Винил корректор, схема из даташита на TDA2320A

Схема позаимствована из даташита на микросхему TDA2320A. По сути это просто сдвоенный операционный усилитель который может быть заменен на любой другой сдвоенный операционный усилитель без изменения схемы.

Работа при однополярном напряжение питания обеспечивается подачей на неинвертирующие входы (3 и 5) половинного напряжения питания посредством применения делителей напряжения R1-R2-R5 и R3-R4-R6.

Емкости С1,С2 и С14,С15 на входах и выходах каждого канала нужны для отсечения постоянного напряжения. Конденсатор С13 в 0.1 мкФ, необходимый для фильтрации ВЧ помех по питанию, желательно расположить как можно ближе к ножке микросхемы, параллельно ему можно включить конденсатор емкостью 10-100мкФ

Чем интересна сама TDA 2320A

Фишкой данной микросхемы является то, что она является усилителем класса А. Это означает, что обе полу-волны сигнала усиливаются одним каскадом. В случае же класса B положительные и отрицательные полу-волны усиливаются разными каскадами внутри микросхемы.

Усилитель класса А гарантирует меньшее количество нелинейных искажений. Данная микросхема может работать как при однополярном напряжении питания от 3 до 36 вольт так и при двуполярном от +-1.5 до +-18 вольт соответственно. Распиновка микросхемы стандартная для операционных усилителей:


Данная микросхема разработана специально для использования в звуковых цепях, а возможность работы при таком низком напряжении питания в 3 вольта, позволяет использовать ее для портативных устройств, например для кассетного плеера. В даташите приведены примеры и других схем фильтров и корректоров.

Винил корректор с двухполярным питанием

Следующая схема была найдена в книге “”Искусство схемотехники”- П.Хоровиц, У.Хилл (стр. 167). На схеме изображен один канал винил корректора:


По сути эта та же самая схема. Но теперь уже используется двухполярное питание, а так же иначе рассчитаны номиналы частотозадающих цепей. Использование двухполярного питания позволяет отказаться как от применения делителей для формирования половинного напряжения питания, так и от выходного конденсатора. Входной конденсатор следует оставить для отсечениея возможного постоянного напряжения предыдущего каскада, а так же как элемент входной RC цепи.

В данной схеме, как и в предыдущей следует установить емкости по питанию 10-100 мкФ и 0.1 мкФ максимально близко к ножкам питания ОУ . Заземленный конденсатор в 47 мкФ уменьшает коэффициент усиления по постоянному току до единицы.


График представляет из себя частотную характеристику усилителя воспроизведения, построенную относительно значения коэффициента усиления 0 дБ при частоте 1кГц.

В качестве операционных усилителей могут быть применены и TL062, TL072, но лучше отдать предпочтение TDA2320, L4558, LM833 и другим ОУ, предназначенным для звуковых цепей, либо обладающими высоким входным сопротивление (>1МОм), низким уровнем шумов и высокой скоростью нарастания сигнала.

Вместо заключения

Какой вариант и на каких операционных усилителях собирать винил корректор — решать вам. Я лично предпочитаю схему на ОУ с двухполярным питанием, ввиду отсутствия лишних элементов, однако схема с однополярным питанием справляется со своей задачей ни чуть не хуже, а применение качественных операционных усилителей и компонентов позволит добиться значительного прироста в качестве звука.

На днях на форуме "Отечественная радиотехника ХХ века" завязался разговор по поводу ламповых корректоров RIAA. Я так же "ввязался" в эту беседу и по ходу разговора вспомнил про ещё одну свою старую, забытую конструкцию. Это ламповый предусилитель с RIAA корректором для ММ-головки, который я делал ещё в 1999 году. Собран он по схеме Ю. Макарова "Неофит" и был описан в журнале "Hi-Fi & Music" № 11 - 1997 год .

Принципиальная схема корректора-предусилителя.

Пришлось потратить немало времени, что бы отыскать эту конструкцию в "залежах" в кладовой. Найти то я его нашёл, но оказалось, что за эти годы я его капитально "распотрошил". И хотя нашлись и остальные блоки (кроме силового трансформатора и дросселя), конструкция уже представляет собой "жалкое зрелище":

На фото: остатки когда-то готовой конструкции.

Когда и зачем я её разобрал - уже не помню. Но помню, что довольно продолжительное время слушал грампластинки через этот корректор (у меня тогда был проигрыватель "Вега-106") и "Аркам". Да и с помощью предусилителя я проводил эксперименты: пытался "облагородить" гармониками звучание CD-проигрывателя.
Плата предусилителя нашлась в другой коробке. Подозреваю, что она то же ещё рабочая:) Когда-то она стояла рядом с платой RIAA. Ну и сохранился ещё анодный БП. На входе стоял кенотрон, потом LC-фильтр, потом стабилизатор на КТ805 на +300 В.

На фото: платы предусилителя и анодного стабилизатора.

Собственно, я хотел проверить работоспособность корректора и, если он ещё рабочий, послушать его и сравнить с тем, который я сейчас "слушаю". Для этого я демонтировал плату из корпуса, осмотрел монтаж, проверил отсутствие КЗ и т.д. - ведь плата, как минимум, лет 8-9 не включалась:

На фото: вид на плату корректора сверху и снизу.

На плате написана дата её изготовления: 26 января 1999 года. Естественно, у меня тогда ещё не было РС (ну, кроме самодельного "Синклера", естественно:)), а про ЛУТ, Sprint Layout и другие радиолюбительские "полезняшки" я узнал много позже:) Поэтому плата нарисована по-старинке, стеклянным рейсфедером и лаком для ногтей.

Чертёж печатной платы корректора и дата изготовления платы.

Осмотром я остался доволен, поэтому подключил её к своему "медному" БП (в БП пришлось сделать небольшую доработку - вывести на колодку напряжение после кенотрона и фильтра, поскольку стабилизатор выдает максимум +220 В). После включения ничего не задымилось и не взорвалось, что уже хорошо:) Под нагрузкой анодное напряжение оказалось равным +291 В, что вполне нормально (штатно д.б. +300 В). Проверил и немного подстроил постоянные напряжения на электродах обеих ламп 6Ж32П. Небольшие отклонения от указанных на схеме есть, но всё в пределах нормы.
После этого подключил его к ресиверу Denon и немного послушал музыку. Откровенно не понравилось. Звук совершенно плоский, как из ведра. Погонял его в "фоновом" режиме часика полтора-два, после чего ещё разок решил послушать музыку.
Аппарат как буд-то бы заменили! Звук стал сочным, насыщенным, таким, какой и ждёшь от пластинки:) Ради интереса, подключил проигрыватель к своему "штатному" корректору. В принципе, отличия есть, но на уровне "нюансов". Но опять-таки, если "Неофит" смонтировать в нормальном корпусе, сделать хороший БП, развести землю, тщательно выставить все режимы, да ещё и заменить проходные конденсаторы (а стоят там не очень качественные ёмкости - поставил те, что удалось тогда найти) - думаю, он "зазвучит" очень хорошо.

На фото: корректор с блоком питания и общий вид "тестового стенда"

Следующим этапом был эксперимент с заменой ламп. В хозяйстве нашлось 3 лампы EF86 фирмы Tesla. Причём, у одной лампы нет 2 и 7 ножек (экрана). Я думал, их кто-то отрезал, но когда присмотрелся, то увидел, что, похоже, их не было с завода.

На фото: лампы EF86; красными кружками обведены отсутствующие ножки.

После того, как я их установил и включил корректор, в колонках началась настоящая "пальба", треск, да такой, что быстренько сработала защита Денона. Вобщем, дал им прогреться с пол-часа, после чего снова аккуратно включил Денон. Стрельба закончилась и мне удалось послушать корректор с этими лампами. Со слухом у меня вроде бы всё нормально, но я, честно говоря, не услышал никакой разницы. Ну вообще никакой. Единственное отличие - когда я колотил рукояткой отвертки по работающей 6Ж32П, звук был очень чётким и звонким, а у Тесловской лампы он "глухой". В этом смысле, конечно, EF86 выглядят лучше.
Одним словом, проверил старенький корректор и теперь с чистой совестью отправлю его своему коллеге. Если он приложит немного усилий, то получит очень хороший корректор для приятного прослушивания пластинок. :)

Напоследок ещё пара симпатичных фотографий.

На фото: лампы корректора в работе и проигрыватель "Yamaha TT-400".

Сложная форма кривой RIAA - компромисс, сложившийся из необходимости получить наилучшее качество воспроизведения из технически несовершенных устройств механической грамзаписи .

Первые серийные пластинки, записанные по этой схеме частотных предыскажений, были выпущены компанией RCA Victor в августе 1952 года . В июне 1953 года схема RCA была одобрена Национальной ассоциацией телерадиовещателей США (NARTB) в качестве национального стандарта; выбор NARTB поддержали другие отраслевые институты, в том числе (RIAA) . К 1956 году новый стандарт, за которым закрепилось название «кривой RIAA», вытеснил конкурирующие форматы и захватил рынки США и Западной Европы. В 1959 году кривая RIAA была одобрена, а в 1964 году стандартизована Международной электротехнической комиссией . В 1972 году стандарт в редакции МЭК был принят в СССР. В 1976 году МЭК видоизменила стандартную кривую воспроизведения RIAA в области низких частот; нововведение встретило ожесточённую критику и не было принято промышленностью . В XXI веке подавляющее большинство производителей предусилителей-корректоров следует первоначальному стандарту кривой RIAA без изменений, введённых МЭК в 1976 году .

Математическое описание

АЧХ записи

V x (ω) ∝ 1 + (ω T 2) 2 1 + (ω T 3) 2 1 + (ω T 1) 2 {\displaystyle V_{x}(\omega)~\propto ~{\frac {{\sqrt {1+(\omega T_{2})^{2}}}{\sqrt {1+(\omega T_{3})^{2}}}}{\sqrt {1+(\omega T_{1})^{2}}}}} , V x (f) ∝ 1 + (f / f 2) 2 1 + (f / f 3) 2 1 + (f / f 1) 2 {\displaystyle V_{x}(f)~\propto ~{\frac {{\sqrt {1+(f/f_{2})^{2}}}{\sqrt {1+(f/f_{3})^{2}}}}{\sqrt {1+(f/f_{1})^{2}}}}} ,

Где V x {\displaystyle V_{x}} - колебательная скорость смещения канавки, f {\displaystyle f} и ω {\displaystyle \omega } - частота и угловая частота сигнала, а T 1 {\displaystyle T_{1}} , T 2 {\displaystyle T_{2}} и T 3 {\displaystyle T_{3}} - специфические именно для стандарта RIAA постоянные времени , определяющие частоты среза , , . В литературе используются разные способы нумерации этих частот и постоянных времени; в приведённых формулах они пронумерованы в хронологическом порядке внедрения их в производство ( f 1 {\displaystyle f_{1}} - 1926 год , f 2 {\displaystyle f_{2}} - 1938 год , f 3 {\displaystyle f_{3}} - 1948 год ):

АЧХ воспроизведения

Обратное преобразование напряжения на выходе электромагнитного звукоснимателя, которое пропорционально колебательной скорости, в выходное напряжение предусилителя-корректора U {\displaystyle U} выполняется «функцией RIAA». Стандартный фильтр RIAA эквивалентен последовательному соединению двух фильтров нижних частот первого порядка (знаменатель) и одного дифференциатора (числитель) :

U (ω) ∝ 1 + (ω T 1) 2 1 + (ω T 2) 2 1 + (ω T 3) 2 {\displaystyle U(\omega)~\propto ~{\frac {\sqrt {1+(\omega T_{1})^{2}}}{{\sqrt {1+(\omega T_{2})^{2}}}{\sqrt {1+(\omega T_{3})^{2}}}}}} (2) , V x (f) ∝ 1 + (f / f 1) 2 1 + (f / f 2) 2 1 + (f / f 3) 2 {\displaystyle V_{x}(f)~\propto ~{\frac {\sqrt {1+(f/f_{1})^{2}}}{{\sqrt {1+(f/f_{2})^{2}}}{\sqrt {1+(f/f_{3})^{2}}}}}} ,

с теми же, что и в АЧХ записи, значениями постоянных времени и частот. Отклонение АЧХ реальных устройств от стандарта не нормируется исходя из предположения, что такое отклонение может быть скорректировано темброблоком усилителя . Целевое значение предельного отклонения АЧХ от стандарта, принимаемое при разработке высококачественных предусилителей-корректоров, составляет ±0,1 дБ .

АЧХ канала воспроизведения («функция RIAA») всегда сосредоточена в предусилителе-корректоре. Эти предусилители практически непригодны для воспроизведения абсолютного большинства «патефонных» пластинок на 78 об/мин из-за спада АЧХ на средних и высоких частотах . Звучание таких пластинок получается тусклым, лишённым обертонов . При воспроизведении пластинок, записанных электрическими рекордерами первого поколения с особо низкой f 1 {\displaystyle f_{1}} , этот эффект усугубляется дополнительным подъёмом нижних частот .

Область определения и нормирование

Обе формулы определены в частотном диапазоне от 20 Гц до 20 кГц; за его пределами АЧХ не регламентируется . Формальная экстраполяция за пределы звукового диапазона показывает, что с уменьшением частоты ниже 20 Гц модуль АЧХ записи асимптотически приближается к единице, а с ростом частоты выше 20 кГц он растёт бесконечно, прямо пропорционально частоте. В реальных рекордерах, помимо фильтров записи RIAA, неизбежно присутствуют не предусмотренные стандартом фильтры, которые блокируют прохождение постоянного тока, инфразвуковых , ультразвуковых и радиочастот на приводы резца и не влияют на передачу звуковых частот . Например, в наиболее распространённом усилителе записи Neumann SAL 74B высокочастотные помехи отсекаются фильтром Баттерворта второго порядка с частотой среза 49,9 кГц . Вносимое им затухание в звуковом диапазоне, менее 0,1 дБ на 20 кГц, неразличимо на слух и не требует какой-либо компенсации в канале воспроизведения .

На практике обе формулы всегда исчисляются в децибелах и нормируются относительно частоты 1 кГц. На этой частоте нормированные значения АЧХ и записи, и воспроизведения равны 0 дБ ; нормированное значение АЧХ воспроизведения на частоте 20 Гц составляет +19,274 дБ (усиление в 9,198 раз относительно уровня на 1 кГц), а на частоте 20 кГц оно падает до −19.62 дБ (ослабление в 9,572 раз) . Таким образом, коэффициенты усиления предусилителя RIAA на частотах 20 Гц и 20 кГц различаются на 39 дБ, или в 88 раз. Распространённое утверждение о том, что на частотах f 1 {\displaystyle f_{1}} и f 2 {\displaystyle f_{2}} нормированная АЧХ воспроизведения принимает значения +3 дБ и −3 дБ, не верно . Оно справедливо для одиночных фильтров первого порядка, но не для цепи последовательно соединённых фильтров с достаточно близкими частотами среза. Точные значения функции RIAA на f 1 {\displaystyle f_{1}} и f 2 {\displaystyle f_{2}} равны соответственно +2,648 дБ и −2,866 дБ .

Предназначение частотной коррекции

Особенности долгоиграющей звукозаписи

Классический технологический цикл производства стереопластинок начинается с нарезания оригинала грамзаписи в тонком слое нитроцеллюлозного лака, нанесённого на алюминиевый диск . Треугольный в плане , принудительно нагретый до 200-300 °С сапфировый резец, закреплённый на массивном тангенциальном «тонарме» рекордера, управляется двумя лёгкими, но мощными электромагнитными приводами, охлаждаемыми струями воздуха или гелия . Частотные искажения, собственный резонанс и нелинейность подвижной системы рекордера эффективно подавляются цепью электромеханической обратной связи, разработанной в конце 1930-х годов и ставшей де-факто отраслевым стандартом к середине 1960-х годов . Резец перемещается от края к центру диска строго по его радиусу, а ось симметрии резца всегда направлена по касательной к нарезаемой канавке .

Сигналы обоих стереоканалов кодируются поперечным (горизонтальным) смещением резца . Смещение внешней, ближней к краю пластинки, стороны канавки соответствует правому каналу, внутренней стороны - левому . При записи монофонического (синфазного) сигнала изменяется только поперечное смещение канавки, а её ширина и глубина остаются неизменными. Смещение резца в глубину лакового слоя и обратно соответствует разности сигналов левого и правого каналов. В ходе сведения фонограммы амплитуда этой составляющей ограничивается, чтобы избежать скачков иглы . Расстояние между канавками варьирует от 200 до 65 мкм (130-390 канавок на дюйм) , что на скорости 33⅓ об/мин обеспечивает длительность воспроизведения одной стороны пластинки от 13 до 40 минут . Предельное поперечное смещение канавки в 1950-е годы ограничивалось величиной 25 мкм; по мере усовершенствования звукоснимателей оно постепенно увеличивалось . В стандарте СССР 1972 года предельное горизонтальное смещение канавки составляло 40 мкм, предельное вертикальное - не более 20 мкм ; к 1978 году допустимое поперечное смещение выросло до 50 мкм . В XXI веке ширина немодулированной канавки практически никогда не опускается ниже 50 мкм; на громких фрагментах канавка расширяется до 80-90 мкм, а при записи синглов на 45 об/мин ширина канавки может достигать 125 мкм .

Верхняя граничная частота записи определяется высокочастотным резонансом резца и не превышает 25 кГц . На частотах выше этой границы амплитуда записываемых колебаний спадает столь быстро, что можно полагать, что записанный сигнал не содержит полезных ультразвуковых составляющих. Исключение - квадрофонические пластинки системы CD-4, в которых спектр полезного сигнала простирается до 45 кГц . Лаковые оригиналы этих пластинок нарезались обычными резцами при замедленной в два раза скорости вращения диска с замедленной в два раза магнитной фонограммы. Предельная частота записи составляла 22,5 кГц, но при воспроизведении на стандартной скорости она преобразовывалась в 45 кГц .

Геометрические ограничения при записи

Перемещение резца при нарезании канавки должно укладываться в три ограничения - по предельной амплитуде смещения канавки, по её предельной колебательной скорости и по предельному ускорению . Первое из них действует в равной мере на всей площади пластинки, отведённой для записи. Ограничения скорости и ускорения устанавливаются для наихудшего случая - канавок, ближайших к центру пластинки . Чем ближе канавка к центру, тем выше вероятность перегрузок и искажений, и наоборот: чем дальше канавка от центра, тем меньше плотность записи колебаний, что делает возможным тщательно рассчитанное превышение пределов скорости и ускорения .

Смысл ограничения амплитуды смещения очевиден: даже незначительное превышение этого предела, не приводящее к разрушению стенки между канавками, может эту стенку деформировать и породить явно слышимый копир-эффект . Запись сигнала с максимальной амплитудой смещения обеспечивает наилучшее отношение сигнал-шум , но она технически возможна лишь в области низких частот. На рубеже не более 1 кГц в силу вступает другое ограничение - по предельной скорости смещения канавки. Несоблюдение этого предела во время записи приводит к тому, что задние грани резца повреждают стенки канавки, нарезанные его передними кромками . При воспроизведении канавки, записанной с превышением скорости, её эффективная ширина сужается, возникает эффект выдавливания иглы из канавки (пинч-эффект) и как следствие - нелинейные искажения . Поэтому предельная скорость смещения канавки всегда ограничивается: в советском ГОСТ 7893-72 уровнем 10 см/с для монофонических и 7 см/с для стереофонических записей ; к 1978 году предел увеличили до 14 см/с . Номинальный уровень записи («0 дБ»), относительно которого нормируется усиление воспроизводящего тракта, соответствует пиковой скорости 8 см/с; на практике его часто приравнивают к среднеквадратической скорости в 5 см/с . В мировой практике встречались пластинки с пятикратным превышением этого порога - 38 см/с (+14 дБ) на частоте 2 кГц, что соответствует ускорению иглы звукоснимателя в 487 .

На высоких частотах в силу вступает третий ограничивающий фактор, связанный именно с ускорением - предельная кривизна канавки. Для того, чтобы игла звукоснимателя могла отследить высокочастотное смещение канавки, радиус этого смещения должен быть не меньше радиуса острия иглы. Если не учитывать это ограничение при записи, то игла будет проскакивать мимо высокочастотных впадин и гребней канавки и необратимо повреждать их . Для стандартных круглых игл с радиусом острия 18 мкм этот эффект («ошибка неогибания» , англ. tracing error ) может проявляться уже на 2 кГц, для игл с узким эллиптическим остриём - на 8 кГц . Нормированный в СССР предел ускорения составлял вначале 25 10 4 см/с 2 (255 G), а к 1978 году вырос до 41 10 4 см/с 2 (418 G) .

Принцип предыскажений

Существуют два основных режима записи гармонического сигнала на лаковый диск. В режиме постоянства амплитуд смещения амплитуда смещения канавки зависит только от амплитуды записываемого электрического сигнала и не зависит от его частоты. При этом скорость изменения смещения растёт прямо пропорционально частоте сигнала и рано или поздно достигает неприемлемо высоких значений. В режиме постоянства амплитуд колебательной скорости от частоты не зависит амплитуда скорости изменения смещения канавки, а амплитуда смещения обратно пропорциональна частоте сигнала. Наиболее распространённые электромагнитные звукосниматели чувствительны именно к колебательной скорости, поэтому воспроизведение пластинок, записанных в этом режиме, не требует какой-либо частотной коррекции. Однако такие записи отличаются неприемлемо высоким относительным уровнем шума на средних и особенно высоких частотах . Из-за этих недостатков ни один из двух режимов не применим в чистом виде. Все практические системы звукозаписи сочетают участки обоих режимов: на низких частотах рекордер работает в режиме постоянства амплитуд смещения, на средних - в режиме постоянства колебательной скорости. Переход от одного режима к другому происходит в особом фильтре предыскажений , а частота раздела выбирается так, чтобы вписать в заданные технологией пределы максимум полезного сигнала.

Идеального решения задачи не существует, так как всякая музыкальная или речевая программа имеет своё, уникальное, спектральное распределение энергии и пиковых амплитуд сигнала . Не существует и эталона такого распределения, которым можно было бы оценить эффективность той или иной настройки фильтра . На практике используется простейшая модель спектра, в которой в диапазоне 20 Гц…1 кГц пиковые амплитуды постоянны, а в диапазоне 1…20 кГц они снижаются со скоростью примерно 10 дБ на октаву . Доля высокочастотных составляющих в этой модели столь мала, что ограничение предельного ускорения теряет смысл. Напротив, с точки зрения лучшего соотношения сигнал-шум целесообразно увеличить уровень высокочастотного сигнала, чтобы максимально полно использовать динамический диапазон записи . Наклон АЧХ в 10 дБ на октаву простыми фильтрами воспроизвести невозможно; на практике используются лишь комбинации фильтров первого порядка, каждый из которых реализует наклон в 6 дБ на октаву . Важна не точность «вписывания» условной модели спектра в условную модель пластинки, но точное, зеркальное соответствие АЧХ каналов записи и воспроизведения .

По той же причине - необходимость подавить низкочастотные помехи воспроизведения - дополнительно поднимается и уровень записи на самых низких частотах (20…50 Гц в стандарте RIAA) . Таким образом, оптимальная АЧХ фильтра предыскажений долгоиграющей записи имеет в звуковой области три точки перегиба: две в области средних частот и одну низкочастотную .

Исторический очерк

Частотная коррекция до перехода на долгоиграющую запись

Абсолютно все пластинки в истории были записаны с искажениями спектра исходного сигнала . Вначале это были естественные, неизбежные и неустранимые частотные искажения чисто механических рекордеров . Этот этап развития технологии достиг вершины в середине 1920-х годов ; тогда же начался переход от непосредственной записи акустических колебаний к электрическому усилению записываемого сигнала . Разработчики первого электрического рекордера Bell Labs Джозеф Максфилд и Генри Гаррисон, понимавшие невозможность использования режимов постоянства амплитуды и постоянства колебательной скорости в чистом виде, ввели в схему фильтр предыскажений с частотой раздела низкочастотной и среднечастотной области ( f 1 {\displaystyle f_{1}} ) 200 Гц . Для частот выше 4 кГц они рекомендовали переход к режиму постоянного ускорения, но в несовершенной аппаратуре 1920-х годов он востребован не был . Не сразу, постепенно, необходимость преднамеренных искажений спектра осознали и другие конструкторы и звукоинженеры .

В 1930-е годы большинство производителей применяли как минимум двузвенную частотную коррекцию, аналогичную схеме Максфилда и Гаррисона, а дополнительный подъём АЧХ на высоких частотах обеспечивали стандартные конденсаторные микрофоны конструкции Уэнта . Рынок США захватила патентованная система записи Western Electric ; британская EMI , а за ней и большинство европейских производителей взяли на вооружение схему «Блюмлейн 250» (англ. Blumlein 250Hz ) с частотой раздела 250…300 Гц .

Первые долгоиграющие пластинки

Компания, работавшая над новинкой с 1930-х годов, всерьёз рассчитывала стать автором и владельцем нового мирового стандарта . Ей действительно удалось сделать стандартом скорость вращения диска (33⅓ оборота в минуту), геометрическую спецификацию канавок, она изобрела и ввела в оборот само обозначение . Схему частотной коррекции долгоиграющих пластинок Columbia выбрала по рекомендации своего старого партнёра - Национальной ассоциации вещателей (NAB) . Точное техническое описание этой схемы никогда не публиковалось; из опубликованных графиков следует, что NAB использовала АЧХ с перегибами на 1590 мкс (100 Гц), 350…400 мкс (400…450 Гц) и 100 мкс (1600 Гц) . С инженерной точки зрения это было удачное компромиссное решение, весьма близкое к будущему стандарту RIAA и почти не отличимое от него на слух .

К 1952 году фирменное название кривой Columbia (англ. LP Curve ) стало в США именем нарицательным . Эксперты отрасли были уверены, что именно эта схема станет стандартом отрасли, но войну форматов Columbia проиграла . Главным недостатком её схемы было то, что она была оптимизирована для пластинок диаметром 406 мм , которые не были приняты рынком. Для завоевавших рынок пластинок диаметром 305 мм , более чувствительных к перегрузкам на высоких частотах, схема Columbia подходила хуже . Выбранное компанией значение f 2 {\displaystyle f_{2}} (1600 Гц) было слишком низко, что лишь усугубляло эти искажения .

Война форматов

Вслед за Columbia на рынок долгоиграющих пластинок вышли конкуренты, использовавшие альтернативные схемы частотной коррекции. Об этих недолговечных технических решениях, никогда не публиковавшихся в виде полноценных технических описаний, сохранились лишь фрагментарные, неточные и часто неверные сведения. Маркировка пластинок этого периода запутана или вовсе недостоверна ; действительную АЧХ предыскажений, применённую при их записи, можно лишь оценить на слух. Например, компания Decca , в 1950 году начавшая продажи долгоиграющей версии своей патентованной системы ffrr , в течение трёх лет опубликовала четыре различных графика АЧХ . Однако, по мнению Копленда, в действительности до перехода на стандарт RIAA Decca применяла лишь две схемы - «Блюмлейн 500» и её вариант с подъёмом высоких частот выше 3,18 кГц . Всего же в послевоенное десятилетие на статус стандарта претендовали не менее девяти различных систем . Граница раздела низкочастотной и среднечастотной области варьировала от 250 до 800 Гц, подъём высоких частот составлял от 8 до 16 дБ на 10 кГц . Кроме того, существовали не предназначенные для тиражирования «фирменные стандарты» крупных радиостанций, архивов и библиотек - например, различные службы BBC использовали три разные схемы предыскажений вплоть до 1963 года . Отраслевые (AES , 1950 ) и международные (CCIR , 1953 ) организации, как могли, «управляли процессом», предлагая собственные решения. Последний из этих несостоявшихся стандартов, германский DIN 45533 , был одобрен в июле 1957 года и так и не дошёл до серийного производства .

Множество несовместимых форматов было на руку лишь производителям аппаратуры, предлагавшим слушателям сложные темброблоки для исправления частотных искажений. Производители пластинок, напротив, были заинтересованы в скорейшей стандартизации частотной коррекции. В 1953 году, когда стало очевидным, что отрасль не собирается принимать схему коррекции NAB и Columbia, Национальная ассоциация телерадиовещателей (NARTB) провела сравнительный анализ схем частотной коррекции, использовавшихся в США, и составила на их основе идеальную «среднестатистическую» АЧХ записи и воспроизведения . Из всех реально используемых схем к ней лучше всего подходила АЧХ записи компании RCA Victor , внедрённая в производство в августе 1952 года под фирменной маркой New Orthophonic . Её отклонение от среднестатистического идеала во всём звуковом диапазоне не превышало ±1,5 дБ . RCA Victor, так же как и Columbia, использовала кривую записи с тремя перегибами, но оптимизированную для скорости 33⅓ об/мин. Именно схема RCA Victor, c подъёмом низких частот на f 3 {\displaystyle f_{3}} =50,05 Гц, и была выбрана в качестве национального стандарта США .

Внедрение

В 1953-1954 годы предложенное NARTB решение было последовательно признано американскими Ассоциацией производителей телерадиоаппаратуры (RETMA) и Обществом звукоинженеров (AES). После того, как в мае 1954 года Американская ассоциация звукозаписывающих компаний (RIAA) утвердила его в качестве национального отраслевого стандарта США, за ним закрепилось название «кривой RIAA» или «частотной коррекции RIAA» (англ. RIAA curve, RIAA equalization ). В 1955 году кривая RIAA стала национальным стандартом Великобритании и получила предварительное одобрение Международной электротехнической комиссии ; тремя годами позже МЭК официально признал кривую RIAA в ранге стандарта (Публикация МЭК-98-1958, ныне IEC 60098).

Переход промышленности США на кривую RIAA был стремительным, по крайней мере на словах . Понимая, что продать запасы старых, нестандартных пластинок в новых условиях будет весьма затруднительно, производители поспешили декларировать соответствие новому стандарту